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A B S T R A C T

Karst regions in southwest China are characterized by vulnerable ecological environment. Knowledge on the
driving factors of vegetation cover change could provide valuable information for ecological restoration man-
agement. However, quantitative identification of the key drivers for the vegetation restoration remains chal-
lenging in karst trough valleys. In this study, we used normalized difference vegetation index (NDVI) time series
(2000–2016), Theil-Sen median analysis, Mann-Kendall trend test, and Hurst exponent to analyze the vegetation
cover trends in a karst trough valley. The performance of multiple linear regression (MLR), generalized additive
models (GAM), support vector machine (SVM), and random forest (RF) in accounting for vegetation cover
change were compared. The results showed that vegetation cover trends for increasing, stable and decreasing
accounted for 71.44%, 28.16% and 0.40% of the study area, respectively. Lithology had a significant effect on
spatial patterns of temporal change and future sustainability in NDVI (p < .01). RF performed much better than
MLR, GAM and SVM in accounting for vegetation cover change. The RF model had much lower fitting error
indices (MAE = 1.46*10−3, RMSE = 1.92*10−3) and higher R2 (0.65) than MLR, GAM and SVM models. Thus,
RF model was applied to identify impacts of driving factors on vegetation cover change quantitatively.
Precipitation change, lithology and elevation were key factors for vegetation cover change. The vegetation
restoration and reconstruction projects should pay more attention to the region where limestone and above-
900 m elevation dominate, due to relatively slow vegetation growth in these regions. The new understandings
obtained in this study enrich our knowledge of the effects of lithology and topography on the vegetation cover
change and are necessary to guide sustainable projects of ecological recovery in karst trough valleys.

1. Introduction

Southwestern karst regions of China are typical ecologically fragile
areas. The largest contiguous exposed carbonate rocks in the world are
distributed in southwest China (Jiang et al., 2014). The hard carbonate
rocks, which are mainly deposited before the Triassic period, and
abundant precipitation in summer lead to developed karst process in
southwest China (Yuan, 1997; Wang et al., 2004a, 2004b). Intense
chemical dissolution of carbonate rocks forms an underground hydro-
logical structures, which result in rapid percolation of rainfall into the
underground (Zhou et al., 2012). The low rate of soil formation and
most karst soil lacking a C horizon make it contact with bedrock di-
rectly and be susceptible to erosion under intense precipitation (Cao
et al., 2004). In the past decades, the ecological deterioration of the
karst regions in southwest China is faced with destruction of vegetation,

soil erosion, and even rocky desertification (Jiang et al., 2014; Wang
et al., 2019). The heavy soil erosion and the loss of water through
underground conduits in karst regions result in the poor crop produc-
tion. Furthermore, eroded soils often fill up the conduits and drainage
outlets in karst lowlands, which bring about waterlogging in arable
lands. Karst rocky desertification has been the most severe ecological
issue exacerbating the poverty of the southwest China (Yuan, 1997;
Shao et al., 2006). A series of ecological restoration projects have been
implemented by local government to restore and rebuild vegetation in
order to combat karst rocky desertification and promote sustainable
development.

Vegetation cover change have been recognized as a primary im-
portance index of the stability of terrestrial ecosystems (Jiang et al.,
2017; Gang et al., 2018). Normalized Difference Vegetation Index
(NDVI), a proxy for photosynthetically active vegetation, is strongly
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correlated with percentage vegetation cover. The value of NDVI has
been widely used to represent vegetation cover at regional and global
scales (Chang et al., 2016; Kang et al., 2017; Zewdie et al., 2017; Szilárd
et al., 2018). A global greening trend has been observed in vegetation in
recent decades using NDVI time series (Liu et al., 2015). Numerous
studies have showed a general increasing trend of vegetation cover in
karst regions of southwest China during past two decades (Cai et al.,
2014; Tong et al., 2017). Knowledge on the mechanism by which ve-
getation cover change contributes to protection and restoration of fra-
gile ecological environments. Therefore, the increasing number of stu-
dies focused on revealing driving factors for vegetation cover change
(Jiang et al., 2017; Pan et al., 2017; Qi et al., 2019). Precipitation has
been considered the most important factor influencing vegetation
growth in the semi-arid regions (Fensholt et al., 2012), while tem-
perature is a limiting factor for the vegetation cover change in high-
latitude areas (Tucker et al., 2001). Recent studies have revealed that
changes in land use type induced by human activities were found to be
primary factors influencing vegetation growth (Zhao et al., 2017; Chen
et al., 2019). The effects of climate (Zhou et al., 2018; Liu et al., 2018),
topography (Tong et al., 2016) and ecological engineering projects
(Zhang et al., 2018; Tong et al., 2019) on vegetation growth have been
proved in karst regions. However, fragile karst ecological environment
mainly results from the characteristics of carbonate rocks. Lithology
dominates the spatial heterogeneity of the ecological environment in
karst regions (Wang et al., 2004b; Jiang et al., 2014). Characteristic of
lithology should be considered in the ecological restoration measures
instead of copying successful experience in other regions. However, the
spatial heterogeneity of vegetation cover change caused by lithology
and the impacts of lithology to vegetation cover change in karst regions
have not yet been explored. Another problem with previous researches
is that the methods of identifying the driving factors for vegetation
cover change assume that these relationships are linear. Linear re-
gression, correlation analysis, and residual analysis have been the most
commonly used method, the preference of these linear methods result
from their simplicity and straightforward interpretation (Cai et al.,
2014; Jiang et al., 2017; Qi et al., 2019). In fact, these relationships are
complex (Gao et al., 2012; Peng et al., 2019b). It is, therefore, necessary
to choose an appropriate method to understand the driving factors of
vegetation cover change under a nonlinear and nonstationary as-
sumption. Nonlinear regression and machine learning methods have
been applied to account for the complex relationship in many fields,
such as economic (Chatzis et al., 2018; Basak et al., 2019), medicine
(Steyrl et al., 2015), biology (Fukuda et al., 2014) and agriculture (Guo
et al., 2015), but not yet in the research on vegetation cover change.

Therefore, the objectives of this study are to (1) analyze spatial
heterogeneity of vegetation cover change and (2) quantify the impacts
of driving factors on vegetation cover change using an appropriate
model in a karst trough valley of southwestern China.

2. Materials and methods

2.1. Study area

The study area (108°43′08″-109°08′08″E and 28°21′49″-
29°24′25″N) is located in Youyang county, southeast of Chongqing,
China (Fig. 1). The study area covers 1710 km2, and approximately
1320 km2 are karst regions, which are underlain by homogenous do-
lomite (51.76%), homogenous limestone (18.15%) and impure carbo-
nate rocks (30.09%) (Fig. 2a). The topography is trough valley with
elevation ranging from 272 m to 1602 m. The average elevations of the
regions underlain by homogenous dolomite, homogenous limestone,
impure carbonate rocks and non‑carbonate rocks are 734 m, 974 m,
810 m and 678 m, respectively. The climate is subtropical humid
monsoon with a mean annual temperature of 17.1 °C and a mean an-
nual precipitation of 1100 mm. Rainfall occurs mainly between April
and August. The land-use types are forestland (46.41%), grassland

(30.24%), urban-rural land (0.41%), and cultivated land (22.94%)
(Fig. 2b). To protect and improve the ecological environment in karst
regions of southwestern China, the National Reform and Development
Commission of China commenced implementation of a pilot karst rocky
desertification restoration project for in the karst regions. Youyang
County is one of pilot areas in 2008.

2.2. Data and processing

The MODIS NDVI dataset from 2000 to 2016 with a temporal re-
solution of 16 days and spatial resolution of 250 m was used in this
study. The dataset was collected from LAADS DAAC (https://ladsweb.
modaps.eosdis.nasa.gov/), which have been corrected by radiation,
geometry and atmosphere. The maximum value composite (MVC)
method was used to obtain the monthly NDVI and further composite
annual maximum NDVI, which represented the most vigorous condition
during a single year. Vegetation cover change was analyzed using an-
nual maximum NDVI in this study. The land-use type dataset was
MODIS MCD12Q1 land use/cover at a 500 m spatial resolution.

Annual average temperature and annual precipitation spatial in-
terpolation datasets at 1 km were derived from Resource and
Environment Data Cloud Platform (http://www.resdc.cn/). They were
further applied to calculate the average annual temperature and pre-
cipitation (TEMmean and PREmean), and temporal changes (TEMslope
and PREslope) from 2000 to 2016. The spatial distribution of carbonate
rocks in study area was extracted from hydrogeological map at a scale
of 1:50000. A digital elevation model was downloaded from the US
Geological Survey Earth Resources Observation Systems data center,
with a spatial resolution of 30 m. Six topographic variables, namely,
elevation (Elevation, m), slope (Slope, °), Surface Curvature Index (Cs),
relief (Relief, m), Topographic Position Index (TPI) and Topographic
Wetness Index (TWI) were calculated from the DEM (Table 1). All to-
pographic variables were calculated by SimDTA1.0.3 software (Qin
et al., 2009).

2.3. Method

2.3.1. Temporal trends analysis
Theil-Sen median (TS) trend analysis (Sen, 1968) combined with the

Mann-Kendall (M-K) test (Mann, 1945) were applied to analyze the
temporal change of NDVI. The advantages of this method are that it
does not require data obeying a certain distribution, and has a strong
resistance to data errors. The TS formula is:
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where NDVIj and NDVIi represent the NDVI values in years i and j, re-
spectively, and n represents length of the time series. If |Z| > 1.96, it

indicates a significant change in the NDVI time series at the 0.05 level.
Thus, the vegetation cover trends were categorized as three types: in-
creasing (βNDVI > 0 and |Z| > 1.96), decreasing (βNDVI < 0 and
|Z| > 1.96) and stable (−1.96 ≤ Z ≤ 1.96).

Fig. 1. Location of the study area.

Fig. 2. The spatial patterns of lithology (a) and land-use types (b) of the study area.
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2.3.2. Future trends analysis
The rescaled range (R/S) analysis is an effective way to quantita-

tively describe the long-term dependence of time series (Hurst, 1951).
The principle of R/S is as follow:

A NDVI time series〈NDVI〉τ is defined as:
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The standard deviation sequence is calculated as:
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where n represents length of the NDVI time series.
Assume that:
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H value is called the Hurst exponent. When 0.5 < H < 1, NDVI
time series is a continuous sequence, that means the future vegetation
cover trends are consistent with the trend of the past. When
0 < H < 0.5, NDVI time series has the anti-persistence, that is, the
future vegetation cover trends are contrary to the trends of the past. The
future trends in vegetation cover were classified into six categories
according to the H value and the temporal change determined by TS
and M-K test in NDVI (Table 2). When H value was higher than 0.5, and
the pixel showed an increasing trend of vegetation cover, the vegetation
cover in this pixel is likely to continue to experience an increasing trend
(Sustainable increasing) in the future. If the trend was decreasing and
its H value was higher than 0.5, the vegetation cover in this pixel is
likely to continue to show a decreasing trend (Sustainable decreasing)
in the future. When a pixel was detected to have no significant trend
(Stable) and its H value was higher than 0.5, the vegetation in this pixel
is supposed to have a stable trend (Sustainable stable) in the future.
When H value was less than 0.5, and this pixel showed an increasing
trend of vegetation cover, the vegetation cover in this pixel is not likely
to continue to experience an increasing trend (Anti-sustainable

decreasing). If the trend was decreasing but its H value was less than
0.5, the vegetation cover in this pixel is not likely to continue to show a
decreasing trend (Anti-sustainable decreasing). If the H value was less
than 0.5, and the vegetation cover trend in this pixel was stable, which
means the trend is anti-sustainable stable.

Analysis of variance (ANOVA) was employed to investigate the
difference in NDVI values in each region.

2.3.3. Driving factors analysis
Four modeling approaches were employed to fit vegetation cover

change. They were multiple linear regression (MLR), generalized ad-
ditive models (GAM), support vector machine (SVM), and random
forest (RF). MLR is a regression model based on classical least square
algorithm and assume the relationships between dependent and in-
dependent variables are linear. GAM is a non-linear function regression,
it could account for non-monotonic relationships in the data (Lin and
Zhang, 1999). The response variable is modeled using a Gaussian family
with identity link, continuous driving factors were used as non-linear
smoothed terms, while categorical driving factors were entered as
linear term. GAM was calculated in R using the “mgcv” package. SVM is
a supervised machine learning algorithm, which use kernel functions to
enlarge the feature space and carry out the nonlinear boundaries by
mapping the input vectors into the high-dimensional feature space
(Gunn, 1998). SVM was modeled in R using the “rpart” package. RF is
developed from decision trees, which combine many decision trees
built using bootstrap sampling and choosing randomly at each node a
subset of explanatory variables (Breiman, 2001). Three parameters,
including number of trees to be grown (ntree), number of variables
sampled at each split (mtry), and the minimum size of the leaf (nodesize)
were set to 1000, 5 and 5 respectively. RF was fit in R using the
“randomForest” package.

In the four models, the response variable was temporal change of
NDVI in each pixel (βNDVI), and the independent variables were the
climate variables (TEMmean, PREmean, TEMslope and PREslope), to-
pographic variables (Elevation, Slope, Cs, Relief, TPI and TWI), li-
thology (non‑carbonate rocks, homogenous dolomite, homogenous
limestone and impure carbonate rocks) and land-use types (forestland,
grassland, urban-rural land and cultivated land) extracted from the
corresponding pixel. The factor function in R studio was used to define
the categorical variables (lithology and land-use types), and it would
enter into the models as a binary variable (0 for absence and 1 for
presence) for calculation.

In order to assess model performances, 30% pixels were randomly
selected from the study area to provide an independent validation da-
taset, and 70% pixels were used to train models. Coefficient of de-
termination (R2), mean absolute error (MAE), and root mean square
error (RMSE) were calculated to assess the accuracies of the fitted
models. The higher accuracy of model, the stronger explanatory power
of the driving factors in the model to the change of vegetation cover.
The model with the highest accuracy was applied to explore relation-
ships between vegetation cover change and driving factors and to fur-
ther identify the driving factors on vegetation cover change.

Table 1
Definition of selected topographic variables.

Topographic variables Units Definition

Elevation m The height of a location above sea level
Slope Degree The steep degree of a surface topographical point
Relief m The differences between the elevation value of the highest topographical point and those of the lowest location within a

specific area.
Surface curvature index (Cs) Dimensionless An index indicate the curvature of three-dimensional surface landform and magnitude of slope gradient.
Topographic position index (TPI) Dimensionless The difference between the elevation value of a position and the average elevation of the neighborhood around that position.
Topographic wetness index (TWI) Dimensionless An index indicate the spatial distribution of soil moisture and surface saturation

Table 2
Future vegetation cover trends based on temporal changes and the H value in
NDVI.

Hurst trends 0 < H < 0.5 0.5 < H < 1

Increasing Anti-sustainable increasing Sustainable increasing
Stable Anti-sustainable stable Sustainable stable
Decreasing Anti-sustainable decreasing Sustainable decreasing
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3. Results

3.1. Temporal trends of vegetation cover

At regional scale, the NDVI increased significantly at the rate of
0.0048/year (p < .01) during 2000–2016 (Fig. 3).

An uptrend in NDVI accounted for 96.51% of the karst trough
valley, with 74.02% showing a significant increase. Only 3.49% of the
areas showed a downtrend in NDVI, of which 11.55% decreased sig-
nificantly. Overall, vegetation cover trends of increasing, stable and
decreasing accounted for 71.44%, 28.16% and 0.40%, respectively
(Fig. 4). The vegetation cover trends at the bottom of the karst trough
valley were mainly decreasing and stable, where the homogenous do-
lomite and cultivated land were dominant.

Lithology and land-use types showed a significant impact on the
change rate of NDVI (p < .01). The highest rate of increase on NDVI
was observed in non-karst region (0.0052/year), followed by the re-
gions underlain by impure carbonate rocks (0.0048/year) and homo-
genous dolomite (0.0047/year), the lowest rate of increase was ob-
served in homogenous limestone region (0.0044/year). The area
percentage of vegetation cover trends in each lithology were shown in

Table 3. Relative small percentage area of homogenous limestone re-
gion showed an increasing trend in vegetation cover. The increase rate
of NDVI for the different land-use types ranked from high to low are
forestland (0.0050/year) > grassland (0.0048/year) > cultivated
land (0.0043/year) > urban-rural land (0.0034/year). The smallest
percentage of increasing trend was observed in the urban-rural land
(Table 3).

3.2. Future trends of vegetation cover

Fig. 5a shows the spatial patterns of the H values for the NDVI time-
series. The mean H value of the study area was 0.77 ranging between
0.32 and 0.98. The H values in about 98.15% of the study area were
greater than 0.5, it indicated that NDVI time-series had a strong positive
sustainability. Lithology and land-use types showed a significant impact
on H value (p < .01). Higher H values were observed in the regions
underlain by non‑carbonate rocks (0.79) and homogenous dolomite
(0.78), followed by impure carbonate rocks (0.77), the lowest H values
were occurred in the homogenous limestone (0.75) region. The average
H value in each land-use type ranked from high to low was forestland
(0.79) > grassland (0.77) > cultivated land (0.76) > urban-rural
land (0.74).

Temporal change and the H value in NDVI were combined into 6

Fig. 3. Inter-annual variation of the NDVI from 2000 to 2016.

Fig. 4. Spatial patterns of NDVI change and vegetation cover trends from 2000 to 2016.

Table 3
Proportion of vegetation cover trends for different regions.

Regions Increasing Stable Decreasing

Non‑carbonate rock 76.33 23.67 0.00
Homogenous dolomite 70.59 28.40 1.01
Homogenous limestone 65.16 34.84 0.00
Impure carbonate rocks 71.82 28.18 0.00
Forestland 76.23 23.69 0.08
Grassland 70.46 29.39 0.15
Urban-rural land 53.15 44.14 2.71
Cultivated land 63.47 35.18 1.35
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classes to indicate future vegetation cover trends (Table 2). The H va-
lues of each pixel where NDVI showed decreasing trend were larger
than 0.5, which indicated that the areas with degraded vegetation did
not turn better in the future, thus there were five future trends of ve-
getation cover in the study area (Fig. 5b). Vegetation cover in most of
the study area (71.4%) showed a sustainable increasing trend. The
lowest share of sustainable increasing vegetation cover trend was found
in homogenous limestone and urban-rural land regions (Table 4).

3.3. Driving factors of vegetation cover change

Table 5 presents the fitting error indices derived from validation of
the temporal change of NDVI using independent validation dataset. The
RF model produced the highest R2 (R2 = 0.65), the lowest MAE
(MAE = 1.46*10−3) and RMSE (RMSE = 1.92*10−3) for temporal
change in NDVI value (βNDVI). Therefore, RF was applied to identify the
importance of driving factors for vegetation cover change, and further
explore relationships between vegetation cover change and main

driving factors (Fig. 7) (Fig. 8).
The mean decrease in mean squared error (MDA) of βNDVIwas used

to identify the importance of drivers to vegetation cover change, and
the higher the value, the more important it is (Fig. 6). The precipitation
change has the highest MDA value, which indicated it was the most
important factor for vegetation cover change. Lithology, elevation,
average annual temperature and precipitation was the second group of
important driving factors, their MDA values were between 60 and 80%.
The MDA values of land-use types and four topographic index (Relief,

Fig. 5. Spatial patterns in Hurst exponent from 2000 to 2016 (a) and future vegetation cover trends (b).

Table 4
Proportion of future vegetation cover trends in different regions.

Regions Sustainable increasing Sustainable stable Anti-sustainable stable Anti-sustainable increasing Sustainable decreasing

Non-karst 76.22 22.09 1.58 0.11 0.00
Homogenous dolomite 70.55 26.77 1.63 0.05 1.00
Homogenous limestone 65.13 32.84 2.00 0.03 0.00
Impure carbonate rocks 71.70 26.15 2.04 0.11 0.00
Forestland 76.15 22.25 1.45 0.07 0.08
Grassland 70.36 27.70 1.70 0.09 0.15
Urban-rural land 53.15 38.74 5.41 0.00 2.70
Cultivated land 63.45 32.74 2.44 0.03 1.34

Table 5
Performance comparisons of the MLR, GAM, SVM and RF models.

Models R2 MAE RMSE

MLR 0.33 1.77*10−3 2.36*10−3

GAM 0.45 1.70*10−3 2.23*10−3

SVM 0.52 1.61*10−3 2.14*10−3

RF 0.65 1.46*10−3 1.92*10−3

Fig. 6. Relative importance of driving factors for vegetation cover change
(LUCC: land-use types; TEMslope: temperature change; TEMmean: average
annual temperature; PREmean: average annual precipitation; PREslope: pre-
cipitation change).
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TWI, TPI and Slope) were between 40 and 60%, they were the third
group of driving factors. Cs and temperature change had the weakest
impacts on vegetation cover change. In general, climate, lithology,
elevation and land-use types were the major driving factors to vegeta-
tion cover change.

4. Discussion

4.1. Impacts of lithology on vegetation cover change

Both the analysis of ANOVA and RF model in this study demon-
strated lithology contributes to the spatial heterogeneity for vegetation
cover change. Acid-insoluble components are low in pure carbonate
rocks, which indicate the rate of soil formation is extremely slow due to
low amounts of residues left after dissolution (Yuan, 2014). Previous
study suggested it would take about 8000 years to form about 1 cm
thickness of soil under the present climate (Yuan, 1997; Wang et al.,
1999). Soil is pivotal to vegetation growth by nutrient and organic
matter supplies, therefore, the lower vegetation cover increases were
observed in karst regions than in non-karst region. The differences in
lithology between limestone and dolomite determine the modes of
dissolution, and result in the spatial heterogeneity of water and soil
resources in karst regions (Jiang et al., 2014). The limestone is domi-
nated by differential dissolution, the developed fractures and joints are
the places where dissolution mainly occurs. These characteristics of
limestone result in the high spatial heterogeneity of topographic fea-
tures in small-scale, while surface soil lose to underground fractures
and conduits. As a result, limestone region is more prone to rocky de-
sertification. Homogeneous dissolution of dolomite results in the rela-
tively uniform and thick distribution of soil and water resources in the
dolomite region compared with the limestone region (Wang et al.,
1999; Wang et al., 2004b), therefore increasing trend in vegetation
cover was pronounced in dolomite region.

4.2. Impacts of climate on vegetation cover change

Precipitation change, the most important factors, showed a stronger
effect than temperature to vegetation growth in the study area. This
finding is different to previous studies which have suggested that slight
changes in precipitation will not affect vegetation growth due to
abundant precipitation and moderate temperature in humid and semi-
humid areas, temperature is the dominant climate factor effecting ve-
getation growth (Hou et al., 2015; Lamchin et al., 2017). However, the
developed underground hydrological structures and the shallow soil
profile result in rapid rainfall infiltration in karst regions (Zhou et al.,
2012; Zhou et al., 2018), although the average annual precipitation is
1100 mm in the study area, underground loss of rainfall leads to the
strong dependency between vegetation growth and precipitation
change. The positive effect between known NDVI and precipitation
means that precipitation promote vegetation growth. This is confirmed
by the RF modeling, which yields the largest marginal increases on
NDVI within the increasing precipitation (Fig. 7a). However, the region
with high annual precipitation showed a low marginal NDVI increase
(Fig. 7b), this relationship may be due to relative high annual pre-
cipitation was occurred in high elevation regions, where limestone
dominates in the study area, these regions are sensitive to soil erosion
under intense precipitation and not conductive to vegetation growth.
Increasing temperature promotes photosynthesis of vegetation and
further improves vegetation cover (Fig. 7d), while temperature varia-
tion above the favorable temperature of vegetation will accelerate
evaporation, which no longer further promote vegetation growth
(Fig. 7c).

4.3. Impacts of elevation on vegetation cover change

Topography imposes environmental constraints on vegetation

growth (Tao et al., 2017). Previous studies have investigated the im-
pacts of topography on vegetation growth in karst regions (Tong et al.,
2016), however, they were not able to quantify the specific advanta-
geous intervals for vegetation restoration. Elevation was identified as
the third driving factor and the most important topographic factor for
vegetation cover change in our study. Fig. 8 shows the relationship
between NDVI temporal change and elevation is not monotonically
increasing. The lowest marginal increase rate in NDVI occurred in the
lower elevation area (< 500 m). This result may be explained by the
fact that the regions dominated by lower elevation are more suitable for
human settlement and cultivation, which restrains the vegetation re-
covery. The marginal increase of NDVI rate is increasing with elevation
and maintain steady within the 600-900 m, however, it decreases when
the elevation is above 900 m. The inconsistent changes due to the re-
gions with high elevation are mainly underlain by limestone in the
study area, differential dissolution in limestone prone to form steep
terrain provides kinetic energy for overland flow, which enhances soil
erosion under heavy rainfall (Wang et al., 2004b). These conditions are
not conducive to the vegetation restoration in these regions.

4.4. Effects of ecological restoration projects on vegetation growth

It is well recognized that climate change and human activities are
two primary drivers of vegetation growth. Implementation of ecological
restoration projects in karst regions was considered to be one of the
major human activities contributing to vegetation growth (Tong et al.,
2017; Brandt et al., 2018). We divided the time period into two sub-
periods based on the time of initiation of karst rocky desertification
control projects, namely, pre-2008 and post-2008. The percentage of
the area from downtrend to uptrend of NDVI is larger in karst regions
(8.9%) than in non-karst region (6.3%) (Fig. 9a). Urban-rural area
showed a larger percentage of the area from downtrend to uptrend after
2008 (Fig. 9b). This results are consistent with the aim of karst rocky
desertification restoration projects, indicating ecological projects con-
tribute to vegetation greening in the study area. Similar phenomena
were reported in Guizhou and Guangxi provinces of China (Tong et al.,
2016; Tian et al., 2017), where the area of rocky desertification reduced
19.0% and 8.8% from 2005 to 2011, respectively (National Bureau of
Statistics of China. http://www.stats.gov.cn/).

4.5. Implications and research limitations

Chinese central and local governments have made great efforts to
restore ecological environment in the karst regions. Our study revealed
that the largest rate in vegetation growth occurred in the area within
500–900 m, implying that this region can be the preferred afforestation
habitat for vegetation restoration in the future. On the other hand, the
lowest NDVI increase rate was observed in the region dominated by
limestone areas above 900 m, therefore, special attention should be
paid to this region to prevent vegetation degradation. Meanwhile,
several reports have shown that revegetation will consume soil water
and led to local water shortages (Schwärzel et al., 2019; Škerlep et al.,
2020). Many scientists have indicated that trees in the karst regions
have complex water resource utilization structures (Zhou et al., 2018;
Peng et al., 2019a, 2019b), therefore, the karst-related characteristics of
water storage could be utilized efficiently for vegetation growth to cope
with water consumption. For example, forest trees have deep roots and
are suitable for planting in the karst regions with fissures to exploit
deep water. In addition, due to rapid water infiltration into the deep
subsurface in karst regions, berms and earth dams could be used to keep
water and to raise the water level in creeks for irrigation, providing
sufficient soil moisture for vegetation regrowth. In addition to re-
storation and reconstruction projects, the economic development and
policy are the driving forces of vegetation growth. For instance, changes
in land use resulting from urbanization and the management model of
agriculture are important factors affecting the vegetation cover change
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(Geest et al., 2010). In order to increase income, large numbers of labor
forces going out for work, migration changes the structure of the ori-
ginal population and influences regional land use and vegetation
growth. However, because of the limitations of available social and
economic census data, these anthropogenic activities were not taken
into account in our study. Thus, more work is needed to quantitatively
analyze the relationship between the vegetation cover change and
various human factors.

5. Conclusions

In this study, we analysis the spatial-temporal patterns and identify
driving factors for vegetation cover change in a typical karst trough
valley of southwest China from 2000 to 2016. Our results revealed that
an increasing trend in vegetation cover was occurred in most areas
(71.44%), and the vegetation cover trends are rather persistent in the
karst trough valley. There was a significant heterogeneity in the vege-
tation cover change and persistent. Precipitation change was the
dominant factor affecting vegetation cover change, and wetting pro-
motes vegetation growth. Vegetation growth is slow where limestone

dominates, while vegetation is prone to recovery in the region between
500 and 900 m in elevation. Karst vegetation restoration projects
should pay attention to the limestone regions above 900 m in elevation
in the study area. The quantified information confirms the need to take
the lithology into consideration for designing effective ecological re-
covery projects. The findings could provide a point of reference for
identifying drivers on vegetation cover change.

Fig. 7. Marginal effect of climate factors on temporal change in NDVI.

Fig. 8. Marginal effect of elevation on temporal change in NDVI.

Fig. 9. Proportion of vegetation cover trend from downtrend to uptrend before
and after 2008 in each lithology (a) and land-use type (b).
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