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ABSTRACT

During the Marine Isotope Stage (MIS) 5/4 transition, the global climate changed from an interglacial to a
glacial state, and hence it was characterized by high-amplitude climate changes. High-resolution stalagmite
records can potentially improve our understanding of climate change during this transition. Here we use a
high-precision 23°Th-dated, 50-yr-resolution stalagmite §'80 record from Yangkou Cave, in Chongqing,
southwestern China, to reveal centennial- to millennial-scale changes in Asian summer monsoon (ASM) in-
tensity during the interval of 98.8-59.3 kyr B.P. (thousands of years before 1950 CE). The record reveals
five Chinese Interstadial events, namely CIS 18-22, and pronounced centennial-scale oscillations are evi-
dent and verified within these millennial-scale events. There are four centennial-scale events of monsoon
strengthening in both CIS 21 and CIS 22, corresponding to Greenland Interstadial events GI 21 and GI 22.
By contrast, CIS 18, CIS 19 and CIS 20 differ in both structure and onset time relative to the corresponding
GI events during MIS 4. During MIS 5, reduced ice sheet and sea-ice cover and strong Atlantic Meridional
Overturning Circulation (AMOC) forced the Intertropical Convergence Zone (ITCZ) towards its northern
limit, which enhanced the teleconnection between the ASM and climate change in northern high latitudes.
During MIS 5, the millennial-scale events (CIS 21 and 22) show a rapid atmospheric teleconnection be-
tween the ASM and the climate of northern high latitudes, but this coupling did not exist during MIS 4. The
weakening of Northern Hemisphere summer insolation, the expansion of ice sheets and sea ice, combined
with the increased influence of Antarctica, may have led to the decoupling of the Asian summer monsoon
and climate change in high northern latitudes.

1. Introduction

the centennial- to millennial-scale events in Greenland ice cores Green-
land Stadials (GS) and Interstadials (GI). Centennial- to millennial-

Climate change during the Last Glacial Period is characterized by a
series of millennial-scale abrupt climatic events, including Dansgaard-
Oeschger events (D/0O) and Heinrich events (H) (Dansgaard et al.,
1993; Heinrich, 1988). With the continuing production of high-
resolution records from ice cores and stalagmites, increasing attention
is being paid to the internal structure of millennial-scale climatic events
(NGRIP Members, 2004; Capron et al., 2010a; Capron et al., 2012;
Wang et al., 2008; Wang et al., 2001). Rasmussen et al. (2014) termed

scale events, such as the precursor (PE) and rebound (RE) events of the
Asian summer monsoon (ASM), are also receiving increasing attention,
which may improve our understanding of the relationship between the
ASM and other climatic factors (Cai et al., 2006; Liu et al., 2010; Zhao
et al., 2010; Zhou et al., 2014; Zhang et al., 2020).

However, many of the published high-resolution stalagmite records
are too short in duration to provide continuous coverage of entire ma-
rine isotope stages, especially MIS 5 and MIS 4 (Zhang et al., 2017;
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Jiang et al., 2019). During MIS 4, only GI 18, GI 19 and GI 20, and H6,
are recorded in Greenland ice cores (NGRIP Members, 2004). The sta-
lagmite records from Wulu Cave and Yongxing Cave in China reveal an
obvious difference between the Chinese Interstadial (CIS) 18 event and
GI 18, mainly in terms of their relative amplitudes of variation (Chen et
al., 2016; Liu and Fang, 2019). Because of the relatively low resolution
of the records from Sanbao Cave (Wang et al., 2008) and Hulu Cave
(Wang et al., 2001), there is no obvious evidence for CIS 18, and in sta-
lagmite JFYK7 from Yangkou Cave, there is a depositional hiatus dur-
ing CIS 18 (Zhang et al., 2017). The CIS 19 and CIS 20 have long been
controversial due to the lack of high-resolution records of the ASM
(Cheng et al., 2006; Cai et al., 2015; Zhang et al., 2017; Liu and Fang,
2019). During the MIS 5b/5a and MIS 5a/4 transitions, CIS 21 and CIS
22 are key events for evaluating the evolution of the ASM (Cheng et al.,
2016). However, due to the lack of continuous, high-resolution stalag-
mite records, the focus of attention has been on the age calibration of
the MIS 5a/4 boundary, and discussion of CIS 21 and CIS 22 is limited
(Zhang et al., 2017; Jiang et al., 2019; Zhang et al., 2020). In addition,
while changes in the circulation of the North Atlantic during the MIS
5a/4 transition have been studied (Piotrowski et al., 2005; Guihou et
al., 2011; Thornalley et al., 2013), changes in atmospheric circulation
(such as the ASM) are less well documented and it is debated whether
there was a change in the mechanism driving the ASM (An et al., 2011;
Chen et al., 2016; Cheng et al., 2016). Thus there is an obvious need for
a greater number of continuous, high-resolution paleoclimatic records
from monsoonal Asia in order to address these issues.

Here we report a new high-resolution stalagmite record (JFYK2)
from Chongqing, southwestern China, which continuously recorded the
evolution of the ASM and most of the centennial- to millennial-scale
events during the interval from MIS 5b to MIS 4. Our specific aims are:
1) to investigate the characteristics of centennial- to millennial-scale
climatic events during the interglacial/glacial transition from MIS 5 to
MIS 4, and 2) to determine the forcing mechanism of the ASM during
the interglacial/glacial stages.

2. Site, materials, and methods

Yangkou Cave islocated in Jinfo Mountain (28°50’-29°20' N, 107°-
107°20’ E, 2000 m above sea level), Chongqing City, southwestern
China (Fig. 1). The study area is located in the eastern part of the
Sichuan Basin, to the north of the Yun-Gui Plateau. The climate of the
area is dominated by the Asian monsoon system. The ASM system in-
cludes two interacting subsystems: the East Asian summer monsoon
(EASM) and the Indian summer monsoon (ISM) (Wang et al., 2017;
Zhang et al., 2019a, 2019b). The annual mean temperature is 14-21 °C,
and the annual precipitation is ~1185 mm (Zhang et al., 2017). The
annual precipitation is concentrated from April to October, accounting
for 83% of the total, and the relative humidity is above 90% (Chinese
Meteorological Administration, http://data.cma.cn).

Stalagmite JFYK2 is 455 mm in length and was collected from the
main chamber of Yangkou Cave (29°02'N, 107°11’ E, 2140 m above
sea level), ~300 m from the entrance (Fig. 1C). The cave is developed
in Permian limestone and has a length of 2245 m. The cave is a shaft-
like skylight developed along the northeast fissures, and is classified as
a semi-closed cave. The plane form of the cave is a single corridor, with
the top being a thin rock layer, and the spatial structure of the cave sys-
tem is relatively simple. When cut in half and polished, the longitudinal
section of JFYK2 is dark brown, with clear growth layers. A hiatus was
found at the depth of 30 mm, corresponding to a colour change from
dark brown to yellow (Fig. 2A).

Subsamples for 22°Th dating were obtained using a 0.9-mm dental
drill, and the weight of each subsample was 15-30 mg. Geochronologi-
cal analyses were performed using a Thermo-Finnigan Neptune Plus,
which is a multi-collector inductively coupled plasma mass spectrome-
ter (MC-ICP-MS). The uncertainty of the 23°Th dates was calculated as
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20 relative to 1950 CE. The procedures for chemical separation and pu-
rification of U and Th are described in Cheng et al. (2013a). The analy-
ses were performed at Xi'an Jiaotong University, China.

For isotopic measurements, a total of 819 subsamples (100 pg) were
obtained by drilling along the growth axis of JFYK2, with a diameter
of 0.5 mm. Analyses were performed using a Delta V Plus isotope ratio
mass spectrometer equipped with a Kiel IV Carbonate Device at the
Geochemistry and Isotope Laboratory of Southwest University, China.
Results are reported relative to the Vienna Pee Dee Belemnite (VPDB)
and standardization was accomplished by using NBS-19 with a §'80
value of —2.20%0, with the 1-sigma external error of <0.1%o for §180.

3. Results
3.1. Chronology

The dating results for the JFYK2 stalagmite are shown in Table 1.
The dating errors are small because the uranium concentrations of the
samples are high (~1 ppm), within the range of 100-600 yr. The sec-
tion from 30 to 455 mm is the focus of the present study (Fig. 2A). An
age-depth model was established using Modage software (Hercman
and Pawlak, 2012), which shows that the stalagmite was continuously
deposited from 98.8 to 59.3 kyr B.P.

3.2. Oxygen isotope record

Atotal of 819 oxygen isotope data were obtained for the interval of
98.8-59.3 kyr B.P. within stalagmite JFYK2, with the average tempo-
ral resolution of ~50 yr. During this interval, the range of variation of
8'80 is —5.5%0 to —10.5%0 , with the average of —7.9%o. During the in-
terval of 98.8-83.9 kyr B.P., the §'80 values show a gradual depletion,
and during the interval of 83.8-76.7 kyr B.P., they show a pronounced
depletion, which implies a climatic event, while during 76.8-59.3 kyr
B.P., they gradually become enriched. However, these trends are fre-
quently interrupted by intervals of depleted 8'%0 values, including dur-
ing 75.0-72.7 kyr B.P., 72.2-69.0 kyr B.P. and 67.2-63.7 kyr B.P. In
addition, there is a significant enrichment trend in 8'%0 during
65.3-59.3 kyr B.P., during which the values fluctuate up to —2.5%¢
(Fig. 3A).

Before interpreting a stalagmite 8'80 record as a climatic proxy, it is
necessary to confirm that the calcite was deposited under isotopic equi-
librium fractionation (Hendy, 1971). Hendy (1971) proposed a basis
for assessing the isotopic equilibrium fractionation between precipi-
tated calcium carbonate and the parent solution. Based on the rules
proposed by Hendy (1971), we drilled out 35 subsamples from five lay-
ers, which were subsequently analyzed. As shown in Fig. S1, the range
of variation of the 5'80 values within the same stalagmite growth lam-
ina was <0.5%o. Moreover, there is no obvious correlation between the
8180 and 8'3C values from the central growth axis to the outer edges
(Fig. S1), which suggests that stalagmite JFYK2 was precipitated close
to isotopic equilibrium conditions and that the 8'0 signal is primarily
of climatic origin. A replication test is another robust means for assess-
ing isotopic equilibrium fractionation (Dorale and Liu, 2009). We in-
vestigated the §'80 record of stalagmite JFYK7 from Yangkou Cave,
and the results indicated a substantial degree of consistency between
this record and that of stalagmite JFYK2 (Zhang et al., 2017) (Fig. 3).
In conclusion, both the Hendy's test and the replication test indicate
that stalagmite JFYK2 was deposited under conditions close to isotopic
equilibrium fractionation, and its §'80 record primarily reflects climatic
changes.
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Fig. 1. (a) Topography and atmospheric circulation systems of Asia. Arrows indicate the trajectories of the East Asian summer monsoon (EASM) (red) and
the Indian summer monsoon (ISM) (magenta). Also shown are the locations of Yangkou Cave (this study, red star), and Sanxing Cave (Jiang et al., 2018),
Yongxing Cave (Chen et al., 2016), Xianyun Cave (Zhang et al., 2020), Zhenzhu Cave (Li et al., 2020), Xinya Cave (Li et al., 2007), Sanbao Cave and Hulu
Cave (Wang et al., 2008), Dongge Cave (Cheng et al., 2016), Bitto Cave (Kathayat et al., 2016), (white rectangles). (b) The location of Yangkou Cave (red
star) in Chongqing, southwestern China, and Chongging City (black circle). (c) Sketch map of Yangkou Cave (Chen and Li, 2018), and the red dot indicates
the location of sample JFYK2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4. Discussion
4.1. Climatic significance of stalagmite 5180 in monsoonal China

The climatic significance of stalagmite 5§80 in the monsoon region
of eastern China remains controversial. For example, there are cur-
rently two interpretations of stalagmite 5'80 in the ASM region: 1) sta-
lagmite 8'%0 represents the intensity of the ASM/ASM circulation
(Cheng et al., 2019; Dong et al., 2015; Wang et al., 2008; Yang et al.,
2019a; Yuan et al., 2004), and 2) stalagmite 580 is an indicator of lo-
cal precipitation amount (Zhang et al., 2008). Monitoring studies of

Yangkou Cave show that the precipitation §'%0 on the inter-annual
timescale can reflect changes in water vapor sources caused by atmos-
pheric circulation (Chen and Li, 2018). Stronger (weaker) ASM circula-
tion results in isotopically depleted (enriched) water vapor via en-
hanced (reduced) Rayleigh distillation processes (Yuan et al., 2004;
Tan, 2014; Yang et al., 2019b). The abrupt climatic events recorded by
the stalagmites from Yangkou Cave (Han et al., 2016; Zhang et al.,
2017; Du et al., 2019) on the millennial timescale are similar to those
recorded by stalagmites from other caves in China since the last glacial
period. Based on 16 stalagmite 8180 records, Yang et al. (2019a) con-
cluded that the 8'80 values of stalagmites track changes in ASM inten-
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Fig. 2. A. Polished section of stalagmite JFYK2. The white bars are the posi-
tions of the U-Th dates used to construct the chronology, and the red dotted
line is the position of a hiatus. B. Age model for stalagmite JFYK2, with 23°Th
dates shown by error bars (26) (Hercman and Pawlak, 2012). (For interpre-
tation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

sity across the East Asian monsoon domain, and that they are not solely
indicators of precipitation at a particular cave site. Cheng et al. (2019)
noted that, overall, precipitation and seasonal precipitation reconstruc-
tions do vary across this highly diverse region. As a consequence, we ar-
gue that the stalagmite 5180 record of Yangkou Cave is not solely a lo-
cal precipitation record and that it also provides insights into variations
in the intensity of the ASM on a large spatial scale, with depleted 580
values indicating a strong ASM and enriched values of a weaker ASM,
as it has been noted elsewhere (Cheng et al., 2009, 2019; Dong et al.,
2015; Wang et al., 2008; Yuan et al., 2004).

4.2. Centennial- to millennial-scale climatic events during MIS 5

The 880 record of stalagmite JFYK2 reveals two millennial-scale
events of monsoon strengthening during MIS 5b-5a (CIS 21 and CIS
22), and they are characterized by a series of centennial-scale oscilla-
tions, similar to the changes within millennial-scale events GI 21 and GI
22 recorded in Greenland ice cores (Capron et al., 2010a; Rasmussen et
al., 2014) (Fig. 4). In stalagmite JFYK2, the CIS 21 event is interrupted
by three short, weak monsoonal events (centered at 81.1 kyr B.P., 78.6
kyr B.P. and 77.2 kyr B.P., respectively) and four centennial-scale
strong monsoon events (CIS 21a, CIS 21b, CIS21c and CIS21d). CIS
21a and CIS 21b correspond to GI 21 rebound-events (Capron et al.,
2010a; Jiang et al., 2019; Moseley et al., 2020) (Fig. 4B), which may
demonstrate that the centennial-scale GI 21 rebound events are widely
recorded in stalagmites in the monsoon region of China (Jiang et al.,
2019). In the JFYK2 880 record, there is a short, weak monsoonal
event at 81.1 kyr B.P., with an 580 enrichment of ~1.5%.. There is also
a monsoonal weakening event at 81.1 kyr B.P., recorded by stalagmite
8180 data from Xianyun Cave (XY12) and Zhenzhu Cave (PS1) (Fig. 4C,
D). Rasmussen et al. (2014) only divided the GI 21 event into three sig-
nificant warm events. According to the NGRIP Greenland ice core
record, the variation of 8'%0 at ~82.3 kyr B.P. exceeds 2%o, and there
are pronounced differences in the climate of Greenland before and after
this cold event. During the CIS 21d event, a series of multi-decadal- to
centennial-scale high-frequency fluctuations in the §'80 record of sta-
lagmite JFYK2, correspond to climatic fluctuations during 84.8-82.3
kyr B.P. in the NGRIP ice core 8'%0 record (Fig. 4). Moreover, differ-
ences in the transition of CIS 21d in stalagmite records from monsoonal
China may be caused by different water vapor sources (Maher and
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Thompson, 2012; Clemens et al., 2010). In addition, the abrupt deple-
tion in the stalagmite JFYK2 §'80 record at ~84.4 kyr B.P. possibly cor-
responds to the CIS 21 precursor event (21-PE) in the East Asian mon-
soon region (Zhang et al., 2020). This event corresponds well with the
GI 21-PE event (Boch et al., 2011; Capron et al., 2010a; Moseley et al.,
2020).

During the interval of 91.4-86.8 kyr B.P., there are four strong mon-
soon events (CIS 22a, 22b, 22¢ and 22d) within CIS 22 recorded in sta-
lagmite JFYK2, similar to the 8'80 record of stalagmite PS1 (Li et al.,
2020) (Fig. 4). Overall, therefore, there is a good correspondence be-
tween the centennial-scale events within the CIS 22 event recorded by
stalagmites in the Asian monsoon region and within the GI 22 event
recorded by the NGRIP 580 record (Rasmussen et al., 2014).

The 8'80 record of stalagmite JFYK2 indicates that during MIS 5b
and 5a, there was a close relationship between the ASM and tempera-
tures at northern high latitudes on the centennial- to millennial-scale,
while the CIS events recorded by stalagmites in the Asian monsoon re-
gion corresponded to internal climatic oscillations within the GI events
recorded in Greenland ice core. In addition, during MIS 5a, there were
numerous significant centennial-scale monsoon events in the ASM re-
gion, indicating the climatic instability of the ASM during the MIS 5 in-
terglacial period.

4.3. Centennial- to millennial-scale climatic events in MIS 4

Due to the lack of high resolution and continuous records, the CIS
18 event is not yet clearly defined in stalagmite records from the Asian
monsoon region (Wang et al., 2001, 2008; Zhang et al., 2019a). There
was no interruption in the growth of stalagmite JFYK2 within CIS 18
and there were nine 23°Th age control points, resulting in a temporal
resolution of up to 50 yr, making it possible to investigate its fine-scale
internal structure and hence the detailed evolution of the Asian summer
monsoon at this time.

The duration of CIS 18 in the JFYK2 stalagmite 5'80 record is ~3.4
kyr (67.3-63.5 kyr B.P.), indicating the occurrence of three centennial-
scale monsoon strengthening events (CIS 18a, 18b and 18c), which de-
pict a stepwise change in the intensity of the Asian summer monsoon
within the CIS 18. The basis for subdividing the internal structure of
CIS 18 is the occurrence of two weak monsoon events (at 65.5 and 64.5
kyr B.P.), especially the latter which lasted for 300 yr, and these events
depict a stepwise change of the Asian summer monsoon intensity during
CIS 18 (Li et al., 2007; Chen et al., 2016; Zhang et al., 2017) (Fig. 5).
The amplitude of variation of CIS 18a in the stalagmite JFYK2 record is
low, but it is higher in Xinya Cave and Yongxing Cave (Li et al., 2007;
Chen et al., 2016). Because of a growth interruption in the stalagmite
JFYK?7 record from Yangkou Cave, only the end of CIS 18a is present
(Zhang et al., 2017). CIS 18b (65.4-64.4 kyr B.P.) in the JFYK2 stalag-
mite record represents a rapid strengthening of the ASM, while in the
stalagmite records from Yongxing Cave and Xinya Cave, the fluctua-
tions are minor. In the JFYK2 record, most of the prominent fluctua-
tions in CIS 18c are concentrated within the interval of 67.3-65.4 kyr
B.P., with the variation of §'80 being above 2%o, and they lasted for a
substantial interval (~2 kyr). In the case of CIS 18c, the JFYK2 and
JFYK7 8'80 records are similar (Zhang et al., 2017). The stalagmite
record from Yongxing Cave also contains pronounced monsoon
strengthening events, during 67.5-65.7 kyr B.P. (Chen et al., 2016). In
the stalagmite JFYK2 8'80 record, CIS 18 contrasts sharply with GI 18
in the Greenland ice core record (Capron et al., 2010a; Rasmussen et al.,
2014). Based on the NGRIP 880 record, GI 18 is a brief climatic inter-
val lasting for 200 yr, with minor fluctuations (~8%c) (NGRIP
Members, 2004). Stalagmites HOL18 and KC1 collected from the Euro-
pean Alps provide only an incomplete record of GI 18. According to the
stalagmite KC1 880 record, there were several small-scale cooling
events prior to GI 18, which are also contemporaneous with the mon-
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Table 1
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Isotopic composition of uranium and thorium and 23°Th ages for Yangkou Cave speleothems as determined by MC-ICP-MS.

Sample Number Depth 23U 22Th 20Th / 2%Th 824U 2%Th / 23U 2%Th age(yr BP) &*Upitia,. 2*Th age(yr BP)
(mm) (ppb) (ppt) (atomic*1079) (measured) (activity) uncorr ected corrected corrected
JFYK 2-1 29 7150.7 +8.2 13,819 =*277 4143 +83.1 143.4 *1.4 0.4856 =+0.0007 59,489 =+151 170 =2 59,374 =155
JFYK2-2 30 8297.9 +6.2 6006 +120 11,111 *222.8 136.0 *1.2 0.4878 =+0.0005 60,392 +129 161 =*1 60,308 =130
JFYK2-3 35 7970.4 +6.4 2973 +60 22,163 *£444.7 131.5 *1.3 0.5014 =#0.0005 62,997 =141 157 =*2 62,921 =141
JFYK2-4 37 11,099.6 +28.9 1880 +42 48,271 *1074.3 116.5 *2.3 0.4960 +0.0015 63,283 +316 139 =+3 63,213 =316
JFYK2-5 50 15,156.7 *14.3 232 +5 550,569 *12,709.3 129.5 =*=1.3 0.5117 =*0.0006 64,898 +145 156 =*2 64,832 +145
JFYK2-6 60 16,334.1 *23.8 360 +8 393,806 *8582.4 149.4 *1.4 0.5267 =+0.0009 65,782 +187 180 =*2 65,714 =187
JFYK2-7 70 12,710.3 *16.8 485 +10 228,380 *4738.8 147.4 *1.4 0.5282 =+0.0008 66,213 =+177 178 =*2 66,145 =177
JFYK2-8 76 9816.2 +12.3 431 +9 207,946 *4331.9 192.8 *1.4 0.5539 +0.0008 66,738 +175 233 *2 66,670 =175
JFYK2-9 80 11,628.5 =*15.7 512 +10 203,908 =*4171.7 169.1 *1.4 0.5441 =+0.0009 67,062 =185 204 =*2 66,994 =185
JFYK2-10 83 13,113.8 *12.5 627 +13 187,247 =*3866.8 165.7 *1.4 0.5426 +0.0006 67,107 +157 200 =*2 67,040 =157
JFYK2-11 87 12,872.8 *19.0 393 +8 297,751 *6334.3 179.6 *1.5 0.5518 =+0.0010 67,477 =204 217 =*2 67,409 =204
JFYK2-12 101 7301.3 +14.9 1832 +44 36,803 +882.6 181.2 *2.3 0.5602 =+0.0015 68,750 +323 220 =+3 68,679 =323
JFYK2-13 121 6697.1 +45 1169 +24 53,964 *£1090.9 176.5 *1.2 0.5714 =+0.0006 71,069 =150 216 =*1 70,999 =150
JFYK2-14 139 11,725.6 +24.4 1092 +30 101,090 =*2797.8 164.3 *1.9 0.5710 =#0.0015 72,124 +314 201 =*2 72,056 =314
JFYK2-15 149 7951.1 +7.2 2677 +54 28,468 *572.3 166.6 *1.4 0.5814 =+0.0007 73,728 +181 205 =2 73,654 =182
JFYK2-16 156 5943.7 +5.8 327 +7 175,389 +3835.8 169.2 *1.7 0.5853 +0.0008 74,183 +212 209 =2 74,116 =212
JFYK2-17 173 9297.7 +36.9 503 +14 178,450 =*5114.7 150.3 *3.7 0.5850 +0.0024 76,000 =589 186 =*5 75,934 =589
JFYK2-18 180 11,027.8 *19.9 560 +11 189,648 =*3862.3 146.1 *1.6 0.5844 =+0.0012 76,317 +267 181 =2 76,249 =*267
JFYK2-19 185 10,843.9 *11.4 590 +14 177,799 =*4288.2 146.1 *1.3 0.5863 +0.0008 76,680 +198 181 =*2 76,612 =198
JFYK 2-20 190 12,389.2 *10.4 228 +11 526,102 =*25,772.9 144.4 *0.9 0.5875 =+0.0007 77,072 =167 179 =*1 77,005 =167
JFYK 2-21 215 13,548.7 *27.9 1368 +40 96,192 *£2803.3 144.1 *1.7 0.5893 =+0.0016 77,439 +350 179 =*2 77,371 =350
JFYK 2-22 230 12,578.9 *16.3 347 +11 353,735 *11,063.1 136.4 =*1.6 0.5925 =+0.0009 78,875 +249 170 =+2 78,807 =*=249
JFYK2-23 240 12,518.9 *13.9 201 +10 600,659 =*29,773.0 118.0 *1.3 0.5835 =#0.0009 79,161 +222 148 =*2 79,094 =222
JFYK2-24 280 9404.9 +9.6 198 +8 475,285 *19,516.8 145.1 =*=1.3 0.6061 =+0.0009 80,540 +222 182 =*2 80,472 +222
JFYK 2-25 285 9221.6 +7.2 288 +11 320,392 =*11,759.8 146.5 *0.9 0.6072 =+0.0008 80,581 +179 184 =*1 80,513 =179
JFYK 2-26 290 9263.0 +9.0 201 +10 458,022 *21,685.8 136.7 =*1.3 0.6031 =+0.0008 80,906 +214 172 =+2 80,839 =214
JFYK 2-27 302 13,353.6 *30.0 1408 +41 95,331 *2774.1 139.3 *2.0 0.6097 =+0.0018 81,896 +423 176 =+3 81,828 =423
JFYK2-28 326 7434.5 +16.3 778 +27 97,561 *£3364.3 143.1 *2.4 0.6192 =+0.0017 83,334 +443 181 +3 83,266 =*443
JFYK2-29 330 5535.8 +5.0 912 +20 63,060 *1364.1 154.2 *1.3 0.6304 =+0.0009 84,246 +228 196 =*2 84,175 =228
JFYK 2-30 340 9666.4 +9.9 361 +11 275,243 =*8056.7 123.0 *1.3 0.6240 =+0.0009 86,766 +244 157 +2 86,698 =*=244
JFYK2-31 350 15,005.4 *13.9 193 *9 791,085 =*36,178.7 108.9 =*=1.0 0.6172 =*0.0008 87,154 =*214 139 =1 87,087 =+214
JFYK 2-32 355 14,496.8 *16.2 149 +11 994,238 =*70,128.2 111.1 =*1.3 0.6195 =+0.0009 87,355 +257 142 =+2 87,287 =*257
JFYK2-33 382 5125.5 +3.4 2181 +44 24,433 £491.1 106.7 *1.3 0.6305 =+0.0006 90,341 +226 138 =*2 90,264 =226
JFYK2-34 392 7498.9 +22.9 1250 +26 60,626 *1267.5 65.4 *£2.7 0.6129 +0.0021 92,294 +633 85 +4 92,226 *633
JFYK 2-35 410 10,162.5 *9.0 1262 +25 81,987 *1654.5 56.9 *1.4 0.6174 =0.0007 94,667 =270 74 +2 94,598 270
JFYK 2-36 427 15,885.7 *43.2 559 +20 293,937 =*10,723.7 67.8 *2.1 0.6276 =+0.0019 95,412 +561 89 +3 95,346 *561

Decay constants: hyzp = 9.1705 X 107%a71; Ay34 = 2.82206 X 107%1; Ay3g = 1.55125 x 10~10a-1;
* 824U = ([2*U/?8Uactivig—1) X 1000. 8234Ujyi, was calculated based on 2°Th ages. **8234Ujyigal = 8%**Uneasured X €34T, Corrected 23°Th ages assume
the initial 22°Th/232Th atomic ratio of 4.4 x 107¢ = 2.2 x 1076. “BP” stands for “Before Present” where the “Present” is defined as the year 1950 CE.
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Fig. 3. 5!80 records of stalagmites JFYK2 (A) (this study) and JFYK7 (B)
(Zhang et al., 2017); the error bars indicate the dating error (* 20).

soon weakening events within CIS 18 (Boch et al., 2011; Moseley et al.,
2014; Moseley et al., 2020).

In the stalagmite JFYK2 880 record, during 77.0-68.0 kyr B.P.,
there are two millennial-scale strong monsoon events (CIS 19 and 20),
corresponding to GI 19 and GI 20. In addition, within CIS 19.1, a cen-
tennial-scale event recorded in the stalagmite JFYK2 580 record, oc-
curred at 68.6 kyr B.P., 500 years later than GI 19.1 (Rasmussen et al.,
2014; Wolff et al., 2010). Based on a comparison of the stalagmite

JFYK2 record with the NGRIP §'80 record (NGRIP Members, 2004) and
the European KC1 stalagmite record (Boch et al., 2011), there are obvi-
ous differences between CIS 19 and GI 19, mainly in terms of the onset
and termination of CIS 19, and the duration of the shift into CIS 19 and
GI 19. The onset and termination of CIS 19 (71.8 =+ 0.3 and
67.0 £ 0.2 kyr B.P.) recorded by stalagmite JFYK2 are consistent with
the stalagmite records from Yongxing Cave in monsoonal China (Chen
etal., 2016; Zhang et al., 2017; Du et al., 2019); however, there are ob-
vious differences in their structure. We suggest that the difference be-
tween the CIS 19 event recorded in the stalagmites of Yangkou Cave
and Yongxing Cave may be related to factors such as subsample resolu-
tion, regional climate and sedimentary processes, which require further
in-depth research to verify.

According to the records from stalagmites JFYK2 and JFYK7, the
onset of CIS 20 was at 75.0 kyr B.P., which is supported by the record
of stalagmite YX46 from Yongxing Cave (Chen et al., 2016). The Euro-
pean stalagmite SCH-6 record (Moseley et al., 2020) indicates that the
onset of GI 20 was at 75.8 kyr B.P., ~1 kyr earlier than the onset
recorded in stalagmites from the Asian monsoon region, and ~ 0.7 kyr
later than the onset recorded in the NGRIP §'80 record. That can possi-
bly be attributed to age error, or to a difference in regional climate and
its driving mechanisms (Moseley et al., 2020).

Comparison of the JFYK2 &!%0 record and Greenland ice core
records indicates that the CIS events were decoupled from the GI
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Fig. 4. Comparison of the climatic record of stalagmite JFYK2 with climatic records from Greenland and Asia. A. NGRIP ice core §'80 record (NGRIP
Members, 2004) (NGRIP record is plotted on the GICCO5modelext timescale (Wolff et al., 2010); B. Stalagmite JFYK2 §'80 record (blue) from Yangkou
Cave (this study); stalagmite SX10 §'80 record (pink) from Sanxing Cave (Jiang et al., 2018); C. Stalagmite PS1 580 record from Zhenzhu Cave (Li et al.,
2020); D. Stalagmite XY12 §'80 record from Xianyun Cave (Zhang et al., 2020). The yellow bands represent centennial-scale abrupt climatic events, the
red dotted lines represent cold events or weak monsoonal events, and the error bars indicate the dating error (+ 2¢). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

events, mainly in terms of the onset and termination times of millen-
nial-scale events and in their internal structure.

4.4. Mechanisms of centennial- and millennial-scale ASM events

The stalagmite §'80 records from Hulu and Sanbao caves indicate a
teleconnection between Asian monsoonal and Greenland temperature

changes on the millennial-scale (Wang et al., 2001, 2008; NGRIP
Members, 2004). In addition, the stalagmite JFYK2 §'80 records from
Yangkou Cave show that the teleconnection differs substantially be-
tween glacial and interglacial periods (NGRIP Members, 2004). Based
on marine records in the North Atlantic (B6hm et al., 2014) and stalag-
mite records from the Asian and South American (Cheng et al., 2013b;
Mosblech et al., 2012), there were pronounced centennial- to millen-
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Fig. 5. Comparison of the stalagmite JFYK2 climatic record with climatic records from elsewhere. A. NGRIP ice core 580 record (NGRIP Members, 2004);
B. NALPS 5'80 records from European Alpine Caves (Boch et al., 2011; Moseley et al., 2014; Moseley et al., 2020); C. Stalagmite JFYK2 580 record (this
study); D. Stalagmite JFYK7 580 record (Zhang et al., 2017); E. Stalagmite XY2 §'80 record from Xinya Cave (Li et al., 2007); F. Stalagmite YX46 (green)
and YX55 (red) 8'80 records from Yongxing Cave (Chen et al., 2016). The yellow bands represent centennial- and millennial-scale abrupt climatic events.
The black arrows represent cold events or weak monsoonal events, the red arrows indicate the trajectory of the shifts into GI 19 and CIS 19, and the red dot-
ted lines indicate the onsets of GI 20 and CIS 20. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

nial-scale abrupt climatic events within the GI 21 and GI 22 events, scales, the Atlantic Meridional Overturning Circulation (AMOC) and
corresponding to the events recorded in the NGRIP §'80 record during Intertropical Convergence Zone (ITCZ) played key role in transmitting
MIS 5b and 5a (NGRIP Members, 2004; Rasmussen et al., 2014; high-latitude climate signals to the Asian monsoon domain (Deplazes et
Deplazes et al., 2013; Mosblech et al., 2012; Cheng et al., 2013b) (Fig. al., 2013; Tapio et al., 2014).

6). It has been demonstrated that on the centennial- to millennial-
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Fig. 6. A. NGRIP ice core §'80 record (NGRIP Members, 2004 ); B. Atlantic Meridional Overturning Circulation (AMOC) record reconstructed from IODP
Site 1063 (Bohm et al., 2014) in the North Atlantic; C. Ice-rafted debris (IRD) record from North Atlantic core MD04-2845 (Sanchez Goni et al., 2013); D.
Stalagmite JFYK2 §'80 record (this study). The gray curve shows summer (JJA) insolation at 65°N (Berger, 1978); E. Colour reflectance (L*) of Cariaco
basin sediment core MD03-2621 (Deplazes et al., 2013); F. Stalagmite §!80 records from South America (purple: S4 from Santiago Cave; pink: NAR-C from
NAR Cave) (Mosblech et al., 2012; Cheng et al., 2013b). (G) 8'80 record of the EDML ice core from Antarctica (EPICA Comm unity Members, 2006). The
colored vertical bars indicate centennial- to millennial-scale events, and the black arrow indicates the trend of each paleoclimatic record during 65-60 kyr
B.P. The red arrows represent cold events or weak monsoonal events. (For interpretation of the references to colour in this figure legend, the reader is re-

ferred to the web version of this article.)

During MIS 4 (Fig. 6), records of the ASM, AMOC, ITCZ and the
South American summer monsoon (SASM) indicate the occurrence of
similar centennial- to millennial-scale events (Mosblech et al., 2012;
Cheng et al., 2013b), but they differ from those in the NGRIP 580
record (NGRIP Members, 2004). This suggests that during the MIS 5/4
transition, the relationship between the ASM and temperatures at
northern high latitudes may have changed. For example, during the GI
18 event, the NGRIP §'80 record only shows a short-duration tempera-
ture increase consisting of a single peak (NGRIP Members, 2004). How-
ever, records of the AMOC reveal two pronounced events of AMOC
strengthening (Bohm et al., 2014), and a significant weakening event
at ~65.2 kyr B.P. (Bohm et al., 2014) (Fig. 6B). In the case of the ITCZ,
three pronounced northward shifts are evident (Deplazes et al., 2013),
and during ~67.1-65.6 kyr B.P., there was a pronounced southward
shift (Fig. 6E). In the case of the SASM, there were two pronounced
weakening events (at 66.7 and 65.0 kyr B.P.) and one strengthening
event (at 66.0 kyr B.P.) (Cheng et al., 2013b; Mosblech et al., 2012).

Correlation analysis of the records of the northern high-latitude
temperature (NGRIP Members, 2004) and the ASM and the ITCZ
(Deplazes et al., 2013) indicates a stronger relationship during MIS 5b-
5a than during MIS 4, while the relationship between the ASM and
IT CZ was stronger during MIS 4 (Fig. S2 D). This indicates that during
the period of MIS 5b-5a, the relationship between the ASM and north-
ern high-latitude temperature was comparatively strong, but that dur-
ing MIS 4 the ASM had a close relationship with the ITCZ, and a
weaker relationship with northern high-latitude temperature. This im-
plies that the relationship between the ASM and the ITCZ and northern
high-latitude temperatures may have changed during the MIS 5/4
transition, and that there was a decoupling of the ASM and high north-
ern latitudes temperature. Notably, Sanchez Goni et al. (2013) also ob-
served an air-sea temperature decoupling process in Western Europe
during the last interglacial-glacial transition.

The foregoing observations raise questions regarding the mecha-
nism responsible for the change in the relationship between the Asian
monsoon and high northern-latitude climate during the MIS 5/4 transi-
tion. During MIS 5, Northern Hemisphere summer insolation was high
and both the sea ice cover (Hoff et al., 2016) and the continental ice
cover area were low (Capron et al., 2010b; Lisiecki and Raymo, 2005).
The annual average position of the ITCZ shifted northward during this
period (Tapio et al., 2014) (Fig. 6E). In addition, the AMOC was rela-
tively active and extended northward as far as the vicinity of the
Nordic Seas (Guihou et al., 2011) (Fig. 6B), with a direct impact on cli-
mate change in the North Atlantic region and Greenland (Henry et al.,
2016; Menviel et al., 2014). At the same time, the enhancement of the
AMOC may have strengthened the impact of shifts in the ITCZ on the
climate of the Asian monsoon region (Chiang and Friedman, 2012;
Tapio et al., 2014). Consequently, on the centennial- to millennial-
scale, there was a strong coupled relationship between the ASM and
northern high latitudes.

During MIS 4, the weakening of Northern Hemisphere summer inso-
lation led to the expansion of continental ice and sea ice cover in north-
ern high latitudes (Kleman et al., 2013; Hoff et al., 2016), which may
have led to the southward movement of the center of the ITCZ and a
weakening of the AMOC (Menviel et al., 2014; Deplazes et al., 2013),
in turn resulting in a weakening impact on the climate of northern high
latitudes (Chiang and Friedman, 2012). Because the energy transfer
from low-latitude to high-latitude regions was impeded to some extent

(Joetal., 2014), a decoupling process occurred between the Asian mon-
soon and the climate of high northern latitudes. The millennial-scale
events during MIS 4 likely reflect this decoupling. For example, ice-
rafted debris (IRD) records from the North Atlantic indicate a short-
duration ice-rafting event at ~65.0 kyr B.P. (Fig. 6C), leading to a
weakening of the AMOC (Bohm et al., 2014; Heinrich, 1988; Sanchez
Goni et al., 2013), which resulted in a southward shift of the ITCZ
(Deplazes et al., 2013) and a weakening of the ASM (Chiang et al.,
2003; Chiang and Bitz, 2005). With the subsequent recovery of the
AMOC, the ITCZ returned to its previous location and the ASM was
strengthened (Cheng et al., 2016; Chiang and Friedman, 2012). At the
end of CIS 18, 8'0 in the JFYK2 stalagmite continued to be enriched,
while the ASM weakened, indicating the initiation of Heinrich event 6
at 63.0 kyr B.P. In addition, there was an increase both in North At-
lantic sea ice and in iceberg inputs (Hoff et al., 2016; Sanchez Goiii et
al., 2013), which weakened the strength of AMOC and caused the cli-
mate to enter a ‘Heinrich state’, accompanied by a rapid southward
shift of the ITCZ and an increase in the strength of the South American
Monsoon (Cheng et al., 2013b; Cheng et al., 2012) (Fig. 6). Subse-
quently, based on Greenland ice core records, northern high-latitude
temperatures gradually increased (Deplazes et al., 2013; Zhang et al.,
2017). This indicates that during the period of maximum ice volume,
during MIS 4, although the annual average position of the ITCZ moved
southward, the AMOC and the ASM both weakened, and the ASM was
still influenced by the ITCZ and AMOC on the centennial- to millennial-
scales (Deplazes et al., 2013; Guihou et al., 2011).

Chen et al. (2016) proposed that the Asian monsoon and the cli-
mate of Antarctica have a strong coupled relationship on the subor-
bital timescale. The stalagmite records from Yangkou Cave show that
the ASM and Antarctic temperature were closely related on the centen-
nial timescale during MIS 4 (Fig. S3). The stalagmite JFYK2 record and
the Antarctic ice core record are significantly correlated during
~76-60 kyr B.P., with correlation coefficients greater than 0.3
(p < 0.01, n = 321), indicating that the ASM was controlled by the
climate of Antarctica during MIS 4. McGee et al. (2014) proposed that
the decrease in temperature in Antarctica led to the strengthening of
the Mascarene High, the Somali jet and northward cross-equatorial
airflows, which eventually increased the intensity of the ISM and
brought isotopically depleted precipitation to the Asian monsoon re-
gion (Deplazes et al., 2014; An et al., 2015; Nair et al., 2019). In addi-
tion, Wu et al. (2020) showed that the coupled relationship between
the Asian summer monsoon and Antarctica mainly existed during MIS
2, and our results indicate that this relationship also existed during MIS
4. We propose that the increased influence of Antarctica may have led
to the decoupling of the Asian summer monsoon from the climate of
high northern latitudes during the last glacial period (Rohling et al.,
2009).

5. Conclusions

We have used high-resolution (~50-year resolution) §'80 measure-
ments of a continuously growing stalagmite from Yangkou Cave in
southwestern China to reconstruct the evolution of the ASM during
MIS 5b to MIS 4 (~98.8-59.3 kyr B.P.). Our main conclusions are as
follows:
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1. During MIS 5b and 5a there were centennial-scale climatic
oscillations during CIS 21 and CIS 22. These oscillations are
consistent with the centennial-scale events within GI 21 and 22 in
Greenland ice core records, within the dating error range, and they
exhibit very similar patterns of change.

2. During MIS 4, there were three centennial-scale monsoon-
strengthening events within CIS 18 (CIS 18a, 18b, and 18c), which
contrast sharply with the single peak of GI 18 in the Greenland ice
core record.

3. The AMOC and ITCZ are a link between the Asian monsoon and
climate change in Greenland. During MIS 5, summer insolation in
the Northern Hemisphere was high, and the AMOC was
strengthened, and the annual average position of the ITCZ shifted
northwards, which promoted a climatic teleconnection between
the Asian monsoon region and northern high latitudes. However,
the weakening of AMOC, the southward shift of ITCZ and the
enhancement of the influence of Antarctica led to the decoupling of
the ASM from the climate of northern high latitudes during MIS 4.
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