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A B S T R A C T   

General greening in vegetation, especially in southwest China, has been observed globally in recent decade. 
However, temporal-spatial variation patterns and potential causes of vegetation greening are not well understood 
in southwest China. Here, we used data of the normalized difference vegetation index (NDVI) and climate, land 
use and land cover, geology, ecological afforestation and karst rocky desertification to analyze the temporal- 
spatial variation patterns in vegetation coverage and its response to climate change and human-induced fac-
tors in southwest China between 2000 and 2016. A general greening trend in vegetation, with significant dif-
ferences in temporal-spatial variation patterns, was observed in southwest China from 2000 to 2016, and the area 
of significant vegetation greening from 2006 to 2016 increased by 4.68% relative to the level from 2000 to 2005. 
The increased proportion of significant vegetation greening was higher in the karst regions (6.95%), especially in 
the limestone region (8.00%), than in the nonkarst region (3.82%). Of all the vegetation greening trends, 65% 
was associated with human-induced factors, and 35% was resulted from climate change from 2000 to 2005. After 
the implementation of karst ecological restoration engineering, the contribution of human-induced factors to 
vegetation greening increased to 77% from 2006 to 2016, although southwest China experienced a serve drought 
during that time. These results highlight that karst ecological engineering projects can reduce the risks of 
desertification and karst ecosystem sensitivity to climate perturbations.   

1. Introduction 

Global greening of vegetation has been observed in recent decades 
(Zhu et al., 2016; Keenan and Riley, 2018; Chen et al., 2019a, 2019b). 
Tree cover has increased by 7.1% relative to the 1982 level in global 
terrestrial ecosystems (Song et al., 2018). The greening of vegetation is 
prominent in India, China, the European Union and Canada. One of the 
largest global increases in vegetation biomass has occurred in southwest 
China, and 4% of global vegetation greening has been located in these 
regions over the past two decades (Brandt et al., 2018). Recent global- 
scale evidence has suggested a direct human impact of 60% on global 
vegetation greening, including grazing, deforestation and policy mea-
sures. Although urbanization, expansion of farmland and excessive 
deforestation have caused the vegetation degradation, soil erosion and 
land degradation, human land-use management has been proved to be 
an important driver of the global vegetation greening. (Gibbs et al., 
2010; Potapov et al., 2015; Piao et al., 2015; Brandt et al., 2017; Chen 
et al., 2019a, 2019b). 40% of vegetation greening are associated with 

indirect drivers such as climate change, CO2 fertilization effects and 
nitrogen deposition ((Los, 2013; Piao et al., 2015; Wang et al., 2015; 
Mao et al., 2016; Zhu et al., 2016; Song et al., 2018). Precipitation was 
considered as the main driver of the vegetation greening in arid and 
semi-arid regions (Fensholt et al., 2012). An increasing evapotranspi-
ration and temperature was accompanied by a decreasing trend for 
vegetation greening in Asia (Lamchin et al., 2018). Additionally, 
extreme weather events had a great influence on the vegetation growth 
(Jiang et al., 2017). 

Southwest China is one of the largest karst regions underlain by 
exposed carbonate rocks in the world. Carbonate rocks, with low 
amounts of soil-forming substances, are highly soluble (Yuan, 2014). 
Forming 1 m of soil involves dissolving 25 m thick carbonate rocks in 
karst regions of southwest China (Yuan and Cai, 1987; Su, 2002). Once 
soil is lost in karst areas, its recovery is extremely long and difficult. In 
addition, substantial population pressure (217 people/km2) in south-
west China karst regions results in overgrazing and over use of land and 
result in severe soil erosion. As a result, karst rocky desertification has 
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reached approximately 0.13 million km2 in 2005 (Bai et al., 2013). Land 
degradation is not only an environmental problem but also a social 
problem exacerbating the poverty level of residents who depend on 
agricultural products (Wang et al., 2019). To combat karst rocky 
desertification in southwest China, a great deal of karst ecological 
restoration engineering, including the Grain for Green Program, Natural 
Forest Protection Project and the Public welfare Forest Protection, has 
been carried out since 1999 in southwest China. To further combat karst 
rocky desertification in southwest China, “A General Plan Outline for a 
Program to Comprehensively Address Karst Rocky Desertification 
(2005–2015)” was initiated in southwest China by the central govern-
ment. The karst ecological restoration engineering aim at protecting the 

exiting vegetation and increasing vegetation coverage to mitigate soil 
erosion and desertification, and further to alleviate poverty for the local 
residents, by closing the land for reforestation and artificial afforesta-
tion. Rural households are provided with free seedlings and compen-
sation payments to replace sloping cropland and livestock grazing with 
trees and grass (Jiang et al., 2014; Tong et al., 2018). In the process of 
karst rocky desertification control and restoration engineering, the 
annual afforestation area (forest plantation, closing hill for afforestation 
and degraded forest restoration) increased since 2006 and increased by 
approximately 2.3 * 105 km2 from 2006 to 2016, while the cumulative 
afforestation area reached nearly 3.4 * 106 km2. The area of rocky 
desertification decreased after 2005, and the annual reduction in area 

Fig. 2. Spatial patterns of carbonate rock outcrops in southwest China.  

Fig. 1. Spatial patterns of global carbonate rock outcrops and location of the study area. Umber areas show regions are underlain by carbonate rocks, the white areas 
show regions underlain by non-carbonate rocks, and the red line delineates the study area. 
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rate was 1.27% from 2005 to 2001 and 3.45% during 2005–2011. 
Numerous studies have shown the vegetation greening trend in the 

southwest China over the past two decades (Cai et al., 2014; Wang et al., 
2015; Tong et al., 2016), and indicated that vegetation greening in 
southwest China was attributed to the afforestation and conservation of 
natural forests. The great changes in land use types resulting from 
ecological restoration projects in recent decades were considered to be 
the driver for vegetation greening in southwest China (Tong et al., 2018; 
Brandt et al., 2018). In addition, a number of studies have investigated 
the impacts of climate on vegetation greening in southwest China. 
Temperature has been considered a limiting factor for vegetation 
greening due to abundant precipitation in southwest China (Hou et al., 
2015). However, a few studies have shown vegetation growth in karst 
regions was susceptible to water stress (Lian et al., 2015; Wan et al., 
2016; Zhou et al., 2018). Meanwhile, several studies have indicated that 
carbonate and non-carbonate rocks have significant differences in 
landscape morphology, soil development and water availability, and the 
characteristics of different carbonate rocks, mainly dolomite and lime-
stone, impose different environmental constraints on vegetation growth 
(Pei et al., 2019; Qiao et al., 2020). Field surveys have revealed that the 
differences between dolomite and limestone determine the ways of rocks 
dissolution, and result in the different ways of using rainfall by vege-
tation (Wang et al., 2004b; Peng et al., 2019a, 2019b). However, the 
response of vegetation greening to climate change in different lithology 
regions in karst area have not been studied yet. A large number of 
studies investigated effects of climate and ecological restoration engi-
neering on vegetation greening in southwest China, it remains unclear of 
the relative importance of the two drivers. To date, few studies focused 
on quantitatively identifying the contributions of climate change and 
human-induced factors to vegetation greening in southwest China. To 
evaluate the contribution of ecological restoration engineering, a pre-
requisite is to distinguish between climate change and human-induced 
greening trend in vegetation. 

Remote sensing data have great potential to monitor ecological 
environment. Normalized Difference Vegetation Index (NDVI), based on 
the red and near-infrared spectrum, has been widely used to monitor 

vegetation activities at regional and global scales. The present study 
used NDVI time-series data to detect the vegetation greening, and 
combined of the time-series of NDVI and climate data to identify the 
climate-driven and human-driven vegetation greening. The Compre-
hensive information of the effectiveness of karst ecological restoration 
engineering is necessary for sustainable ecosystem management in 
southwest China. Therefore, the objectives of this study are (1) to assess 
the temporal-spatial variation patterns in vegetation greening, and (2) to 
quantitatively distinguish the contributions of karst ecological restora-
tion engineering on vegetation greening in southwest China. 

2. Materials and methods 

2.1. Study area 

The study area (20◦13′-34◦19′N and 97◦21′-117◦19′E) is located in 
southwest China, covering the entire karst regions in southwest China, 
and includes Yunnan, Guizhou, Sichuan, Chongqing, Guangxi, Guang-
dong, Hunan and Hubei provinces (19.5 × 105 km2) (Fig. 1). Twenty- 
eight percent of the study area (5.4 × 105 km2) is karst, which is un-
derlain by exposed carbonate rocks. Carbonate rocks consist of lime-
stone (50.07%), dolomite (8.75%), mixed limestone/dolomite (10.13%) 
and impure carbonate rocks (31.05%) (Fig. 2). The rocky desertification 
reached 24% of the exposed carbonate rocks areas in southwest China in 
2005 (Fig. 3). 

2.2. Data and processing 

The normalized difference vegetation index (NDVI) was utilized to 
detect vegetation coverage change. The NDVI dataset used in this study 
was MODIS NDVI with a spatial resolution of 250 m and a temporal 
resolution of 16 days from 2000 to 2016. The annual maximum NDVI 
time series were obtained from the monthly NDVI by the maximum 
value composite (MVC) method to represent the best vegetation growth 
status in a single year (Peng et al., 2019a, 2019b). The land use type 
dataset was MODIS MCD12Q1 land use/cover at a 500 m spatial 

Fig. 3. Distribution of karst rocky desertification area in southwest China in 2005.  
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resolution. The MODIS data were derived from the LAADS DAAC 
(https://ladsweb.modaps.eosdis.nasa.gov/). 

Temperature and precipitation data for 245 meteorological stations 
in southwest China from 2000 to 2016 were collected from the Chinese 
Meteorological Information Center (http://data.cma.cn/). The spatial 
patterns of annual average temperature and annual precipitation were 
predicted using thin-plate smoothing splines interpolation in ANUSPLIN 
4.4 (Hutchinson and Xu, 2013) from the climate data. 

The spatial patterns of carbonate rocks in southwest China were 
collected from the Institute of Karst Geology, Chinese Academy of 
Geological Sciences (http://en.cags.ac.cn/). 

The afforestation area data were derived from the National Bureau of 
Statistics of China (http://www.stats.gov.cn/). 

The karst rocky desertification area data were collected from State 
Forestry Administration of China (http://www.forestry.gov.cn/portal/ 
zsxh/s/3445/content-548741.html). 

2.3. Methods 

2.3.1. Linear regression analysis 
The temporal-spatial variation of the NDVI, temperature and pre-

cipitation were calculated by a linear regression. 
formula is: 

β =
n ×

∑n
i=1i × Ai −

∑n
i=1i

∑n
i=1Ai

n ×
∑n

i=1i2 −
( ∑n

i=1Ai
)2 (1)  

where n is the number of years andAi is the variable value in year i. β 
indicates the direction and magnitude of the temporal variation: positive 
slope (β > 0) exhibits an uptrend of the variables, and negative slope (β 
< 0) denotes a downtrend of the variables. 

The significance of the NDVI trend was examined by F test at a 
confidence level of 95%, NDVI trends were categorized as four levels: 
significant increase (βNDVI > 0, p ≤ 0.05), nonsignificant increase (βNDVI 
> 0, p > 0.05) significant decrease (βNDVI ≤ 0, p ≤ 0.05) and nonsig-
nificant decrease (βNDVI ≤ 0, p > 0.05). For evaluating the vegetation 
coverage changes, the trends were divided into two types: vegetation 
greening (βNDVI > 0) and vegetation browning (βNDVI ≤ 0). 

2.3.2. Mann-Kendall test 
The Mann-Kendall test, a non-parametric test method that does not 

assume any distributional form for the data, is widely used to identify 
the change point in the considered time series data (Mohsin and Gough, 
2009; Tong et al., 2017; Chen et al., 2019a, 2019b). The Mann-Kendall 
test was adopted to detect the turning year of the vegetation coverage 
change. The test statistic is defined as follows: 

For NDVIi time series, 

dk =
∑k

i=1
NDVIi (2)  

Var(dk) =
k(k − 1)(2k + 5)

72
(3)  

E(dk) =
k(k − 1)

4
(4)  

UFk =
dk − E(dk)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(dk)

√ (5)  

where NDVIi represents the NDVI value for the year i, and k represents 
the length of the time series. The UBk is the backward statistical 
sequence generated with the reverse data series of NDVIi, it was calcu-
lated by the formula (2)–(5). 

When the UF values are more than zero, it indicates an uptrend in 
NDVI, otherwise the values indicate a downtrend in NDVI. UB curve is 
used to search for an abrupt change in the NDVI trend. The intersection 
point of the two sequence curves within the confidence interval (p <
0.05, the interval is ±1.96) indicates the change year of NDVI trend. 
Assuming that long-term change in vegetation coverage was only 
affected by climate change and human-induced factors, and thus this 
turning point was caused by the climate change and human-induced 
factors. In order to analyze the drivers for this significant change in 
vegetation coverage trend, based on the year corresponding to the 
turning point, the time series (2000–2016) was divided into two periods. 

2.3.3. Correlation analysis 
The Pearson correlation coefficients (R) between the NDVI and 

climate variables were calculated in each pixel to indicate the impact of 
climate on vegetation greening. Correlations with p ≤ 0.05 are consid-
ered to be significant. Therefore, the correlations between vegetation 
greening and climate variables were classified to four types: significantly 
positive correlation (R > 0, p ≤ 0.05), nonsignificantly positive corre-
lation (R > 0, p > 0.05), significantly negative correlation (R < 0, p ≤
0.05), and nonsignificantly negative correlation (R < 0, p > 0.05). The 
spatial patterns of the contribution of human-induced factors to vege-
tation coverage change and driving factors of vegetation greening were 
calculated respectively in two periods based on the turning point to 
reveal the effects of karst ecological restoration engineering. 

2.3.4. Residual analysis 
The residual analysis has been widely used to distinguish the con-

tributions of climate change and human-induced factors to vegetation 
greening (Huber et al., 2011; Wessels et al., 2012; Tong et al., 2016; Duo 
et al., 2016). We assumed that NDVI was only affected by climate change 
and human activities. The residual analysis is based on the observation 
that a strong relationship exists between NDVI and climate (temperature 
and precipitation). If the influences of climate are removed from the 
NDVI time series, then the residuals can be attributed to the effects of 
human-induced factors. The method has three steps. First, A pixel-based 
multiple linear regression between the annual NDVI (NDVI) and annual 
temperature (T) and precipitation (P) was established, and the regres-
sion coefficients (a, b1, and b2) were used to predict the annual NDVI 
(NDVIpre) in each pixel. 

NDVIpre = a+ b1T + b2P (6) 

Fig. 4. Interannual change (a) and turning point (b) in the NDVI (2000–2016).  
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Fig. 5. Spatial patterns of the NDVI trends in different periods (2000–2016 (a), 2000–2005 (b) and 2006–2016 (c)).  
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Then, the residuals were calculated for each pixel between the 
observed annual NDVI and predicted annual NDVI, which represented 
the remaining observed NDVI value that were not explained by pre-
cipitation and temperature. 

NDVIres = NDVI − NDVIpre (7) 

The changes in the NDVIpre (βNDVIpre ) and NDVIres(βNDVIres ) were 
calculated based on Eq. (1). Finally, the contribution of human-induced 
factors (Chuman) and climate change (Cclimate) to the vegetation coverage 
change were defined (Pan et al., 2017; Qi et al., 2019): 

Chuman =
βNDVIres

βNDVI
× 100% (8)  

Cclimate =
βNDVIpre

βNDVI
× 100% (9) 

A negative Chuman value indicates the contribution rate of climate 
change to vegetation coverage change is 100% (Chuman = 0, Cclimate =

100%), and a negative Cclimate value means the contribution rate of 
human-induced factors to vegetation coverage change is 100% (Chuman =

100%, Cclimate= 0). When βNDVI > 0 and Chuman > 50%, human-induced 
factors dominate the vegetation greening; βNDVI > 0 and Cclimate > 50% 
suggests climate change dominate the vegetation greening. The spatial 
patterns of the contribution of human-induced factors to vegetation 
coverage change and driving factors of vegetation greening were 
calculated in two periods based on the turning point to reveal the effects 
of karst ecological restoration engineering. 

3. Results 

3.1. Temporal-spatial variation patterns in vegetation coverage 

3.1.1. Temporal variation patterns in vegetation coverage 
At the regional scale, the NDVI showed a significantly increasing 

trend at the rate of 0.0026 year− 1 from 2000 to 2016 (p < 0.01) 
(Fig. 4a). As shown in Fig. 4b, the positive values of the forward 
sequence (UF) exceeded the confidence interval (p < 0.05) after 2011, 
and the curves of UF and UB intersected in around 2006, indicating there 
was a significant change in the increasing trend of NDVI. In order to 
compare the differences in vegetation greening before and after the 
turning year, and identify the drivers for this significant change in 
vegetation greening, based on the turning year, the time period was 
divided into 2000–2005 and 2006–2016. 

At the pixel scale, >77% of southwest China showed an increasing 
trend in the NDVI, and 23% showed a decreasing trend from 2000 to 
2016. The differences in the NDVI change between the two time periods 
were represented by the NDVI trends, namely, the area with a significant 
NDVI change (p < 0.05), were more accurate than that by the rate of 
NDVI change due to different time lengths in the two-time series. A 
significant change in the NDVI was detected in 23% of the study area 
between the two periods, of which 61% showed a trend from a 
nonsignificant to significant increasing trend (Fig. 5). The area of sig-
nificant increasing and decreasing trends in the NDVI increased by 
153,438 km2 and 24,979 km2 after 2005, respectively, during the 
observed 17 years. Overall, vegetation showed a greening trend from 
2000 to 2016, and the greening trend was more significant from 2006 to 
2016 than from 2000 to 2005 in southwest China. 

3.1.2. Spatial variation patterns in vegetation coverage 
As shown in Table 1, notable differences in the NDVI change were 

found in different regions between the two periods. The same average 
annual NDVI increase rate (0.0041 year− 1) was detected in nonkarst and 
karst regions from 2000 to 2005. During 2006–2016, the increasing rate 
of the NDVI in the karst regions (0.0029 year− 1), especially in the 
limestone area (0.0031 year− 1), was higher than that in the nonkarst 
region (0.0018 year− 1). At the pixel scale, the same phenomenon as at 
the regional scale was observed in each region (Fig. 5). The largest in-
crease in the proportion of the significantly increasing trend in the NDVI 
was observed in the karst regions (6.95%), especially in the limestone 
area (8.00%). 

3.2. Spatiotemporal change in climate 

A weak warming trend was observed in southwest China from 2000 
to 2016, and the annual average temperature increased to a maximum 
value in 2006 and fluctuated greatly during 2006–2016 (Fig. 6a). The 
annual mean precipitation showed a decreasing trend during the 

Table 1 
Annual rate of the NDVI change and the proportion of significant NDVI trends in 
2000–2005 and 2006–2016 for the different regions.  

Regions Time 
period 

Rate Significant 
increase 

Significant 
decrease 

Southwest China 2000–2005  0.0041  7.39%  1.38%  
2006–2016  0.0021  12.07%  2.63% 

Nonkarst 2000–2005  0.0041  7.46%  1.43%  
2006–2016  0.0018  11.28%  2.82% 

Karst 2000–2005  0.0041  7.22%  1.26%  
2006–2016  0.0029  14.17%  1.57% 

Limestone 2000–2005  0.0040  7.20%  1.28%  
2006–2016  0.0031  15.20%  1.41% 

Dolomite 2000–2005  0.0048  8.36%  1.01%  
2006–2016  0.0027  12.77%  1.99% 

Mixed limestone/ 
dolomite 

2000–2005  0.0038  6.56%  1.41%  

2006–2016  0.0029  13.79%  2.01% 
Impure carbonate 

rocks 
2000–2005  0.0040  7.15%  1.24%  

2006–2016  0.0026  13.04%  1.55%  

Fig. 6. Interannual changes in annual average temperature and precipitation (2000–2016).  
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observed 17 years, decreased to minimum values in years approximately 
2010 and became increasingly favorable from 2011 to 2016 (Fig. 6b). 

Spatially, 76% of the study area showed a positive temperature 
slope, while 58% of the area showed a negative precipitation slope 
during the observed 17 years (Fig. 7). Approximately 70% of the karst 
regions showed warming and drying climates during 2000–2016. 

According to the turning point in the NDVI change, the climate 
change was divided into two periods (2000–2005 and 2006–2016). 

There was no significant difference in temperature and precipitation 
between the two time periods (p > 0.05). The average temperature from 
2000 to 2005 was lower than that from 2006 to 2016, and the average 
annual precipitation in 2006–2016 was 32 mm less than that in 
2000–2005. In addition, climate trends were relatively unstable after 
2005 (Fig. 6), therefore, southwest China had a relatively moderate 
climate from 2000 to 2005 and a relatively dry climate during 
2006–2016. The results are consistent with previous studies in 

Fig. 7. Spatial patterns of the annual changes in the annual average temperature (a) and precipitation (b) from 2000 to 2016.  
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southwest China, which argued the regions experienced extreme 
drought in 2006 and around 2010 (Li et al., 2011; Yuan et al., 2015). 

3.3. Conversion of land use types from 2000 to 2016 

Grassland and barren land areas continuously decreased, with net 
losses in area of 91,932 and 1250 km2, respectively, while urban land 
areas continuously increased, with a net increase in area of 2960 km2 

between 2000 and 2016 (Table 2). 
During 2000–2005, 60% of the loss of grassland area was converted 

to croplands (46,608 km2). The increase in cropland accounted for the 
primary increase in land use in karst regions (46%). Forestlands 
decreased by 2875 km2, and croplands increased by 26,341 km2 

(Table 2). The expansion of urban lands mainly encroached upon 
grasslands and croplands (2174 km2). 

During 2006–2016, 98% of the loss in croplands was due to con-
version to grasslands and forestlands (50,225 km2). Increases in forest-
land accounted for the main increase in land use in karst regions (45%). 
Forestlands increased by 72,571 km2, and croplands decreased by 
10,485 km2. The expansion of urban lands encroached upon substantial 
natural land resources (2872 km2). 

4. Discussion 

4.1. Contribution of climate change and human-induced factors to 
vegetation greening 

Vegetation cover change is commonly considered to be triggered by 
climatic factors and human-induced factors, separately or together, to 
influence vegetation greening at regional and global scales (King et al., 
2015; Qi et al., 2019). Thus, quantitatively identifying the contributions 
of climate and human-induced factors to vegetation greening is critical 
for developing adaptation strategies. As shown in Fig. 8, the contribu-
tion rate of human-induced factors to NDVI change increased from 60% 
in 2000–2005 to 70% in 2006–2016. Sixty-five percent of the vegetation 
greening was mainly associated with human-induced factors, while 
climate change influenced 35% of the vegetation greening from 2000 to 
2005 in southwest China. The proportion of vegetation greening driven 
by human-induced factors increased to 77% throughout southwest 
China and was as high as 81% in karst regions from 2006 to 2016 
(Fig. 8). 

4.2. Climate-driven greening trend in vegetation—difference between the 
karst and nonkarst regions 

4.2.1. Impact of temperature on vegetation greening—difference between 
the karst and nonkarst regions 

Temperature had a general positive correlation with vegetation 

growth (R = 0.053), and the correlation showed no significant differ-
ence between the karst and nonkarst regions under a moderate climate 
(2000–2005). Increasing temperature will promote photosynthesis, 
which is conducive to vegetation growth. Although increasing temper-
ature has a positive effect on vegetation growth, it also affects water 
availability. Rising temperatures accelerate surface water evaporation in 
a dry period, which limits vegetation growth. Therefore, an overall 
negative correlation coefficient was detected between the NDVI and 
temperature from 2006 to 2016, and remarkable differences in the 
correlations were apparent in the different regions (Table 3). Specif-
ically, most karst regions showed correlations between the NDVI and 
temperature change ranging from positive to negative (Fig. 9), and 
temperature had more negative effects on vegetation growth in the karst 
regions (R = − 0.041) than in the nonkarst region (R = − 0.014). A karst 
ecosystem is characterized by a thin soil layer and weak water storage 
capacity; consequently, vegetation growth is more likely to be sup-
pressed by increasing temperature (Cai, 1989; Wang et al., 2004a; Yuan, 
2014). Irrigation may mitigate intense evaporation under drought con-
ditions; therefore, a weak negative correlation between the NDVI and 
temperature was detected in the mixed limestone and dolomite region 
with more farmlands. 

4.2.2. Impact of precipitation on vegetation greening—difference between 
the karst and nonkarst regions 

Precipitation promoted vegetation growth from 2000 to 2016 in 
southwest China. The correlation relationships between the NDVI and 
precipitation were stronger in the relatively dry period (2006–2016) 
than under relatively moderate climate (2000–2005). The differences in 
the correlations among the regions are highlighted in Table 3. The 
correlation coefficient between the NDVI and precipitation was signifi-
cantly higher in the nonkarst region than in the karst regions from 2000 
to 2005, which indicates that the responses of vegetation in the nonkarst 
region to precipitation are more prominent under a moderate climate. 
Developed underground hydrological structures with numerous fissures 
and conduits allow rainfall to quickly percolate into the underground 
river network (Zhou et al., 2018). As a result, direct utilization of rainfall 
by vegetation is lower in karst regions, rendering the correlations be-
tween the NDVI and precipitation weak in the karst regions. However, 
stronger positive correlations between the NDVI and precipitation were 
found in most karst regions (Fig. 9), and there were higher correlation 
coefficients for the karst regions in the dry periods (2006–2016) 
(Table 3). The main reason for this difference may be attributed to the 
shortage of underground water due to drought and weak soil water 
storage capacities in the karst regions. Additionally, sparse vegetation 
cover induced by karst rocky desertification in some places may result in 
rapid evaporation of soil water during the drought. Thus, the water 
requirement for vegetation growth heavily depended on precipitation in 
karst regions from 2006 to 2016. 

Table 2 
Transition matrix of land use types between 2000 and 2005 and between 2006 and 2016 (km2).   

2005 

2000 Forestland Grassland Cropland Water Urban land Barren land 
Forestland 300,290 31,817 21 13 6 1 
Grassland 28,954 1,222,645 46,608 714 1,289 555 
Cropland 9 19,376 247,099 29 885 2 
Water 19 1355 13 15,259 180 142 
Urban land 0 0 0 0 26,788 0 
Barren land 1 772 0 120 145 7210  

2016 
2006 Forestland Grassland Cropland Water Urban land Barren land 
Forestland 300,910 28,319 17 24 2 0 
Grassland 100,710 1,128,423 40,589 3497 2193 554 
Cropland 201 50,024 242,624 206 679 8 
Water 20 772 25 15,156 55 106 
Urban land 0 0 0 0 29,292 0 
Barren land 3 1294 0 251 31 6332  
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Fig. 8. Spatial patterns of the contribution of human-induced factors to vegetation coverage change and driving factors of vegetation greening in 2000–2005 (a and 
b) and 2006–2016 (c and d). 
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In summary, vegetation growth is generally more sensitive to 
drought in the karst regions than in the nonkarst region. Temperature is 
the main climate factor affecting vegetation greening under a moderate 
climate, while precipitation is the important climate factor affecting 

vegetation greening under drought in southwest China, especially in the 
karst regions. However, <6% of the area showed a significant rela-
tionship between the NDVI and climate, indicating that climate change 
is not the main driver of vegetation greening. 

Fig. 8. (continued). 
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Fig. 9. Spatial patterns of the correlation coefficients between vegetation and temperature (2000–2005 (a) and 2006–2016 (b)) and precipitation (2000–2005 (c) 
and 2006–2016 (d)). 
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4.3. Karst ecological restoration engineering drives vegetation greening in 
southwest China 

Our results indicate that human-induced factors have a remarkable 
impact on vegetation greening in southwest China during the past two 
decades, which is consistent with the results of previous studies (Tong 
et al., 2018; Zhang et al., 2018). Since the launch of afforestation efforts 

in 1999, general vegetation greening was observed throughout south-
west China. The timing of the turning point in the NDVI increase was 
consistent with the planning of karst rocky desertification comprehen-
sive control and restoration projects. Vegetation recovery in the karst 
regions was mostly pronounced, and the proportion of karst vegetation 
greening driven by human-induced factors increased to 81% after con-
servation. Therefore, it can be assumed that karst ecological restoration 

Fig. 9. (continued). 
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projects are considered human-induced factors in terms of karst vege-
tation greening. There was a noticeable net decrease in farmland area 
(10,485 km2), which mostly returned to grassland, and a remarkable 
increase in forestland area (72,571 km2) from 2006 to 2016 in contrast 
to the expansion of croplands during 2000–2005 in southwest China. 
This natural vegetation restoration was consistent with the aim of 
ecological restoration projects, indicating that land use changes in 
recent decades largely occur due to karst ecological conservation 
projects. 

The increase in afforestation area since 2006 was considerable 
(Fig. 10a), and a strong correlation between the NDVI and the cumu-
lative afforestation area was observed from 2000 to 2016 (R2 = 0.9, p <
0.01). Vegetation greening has been recognized as a primary index of 
the recovery of karst rocky desertification (Qi et al., 2013; Yan et al., 
2019). The decrease in the area of karst rocky desertification from 2005 
to 2016, especially during the period 2011–2016 (Fig. 10b), was 
accompanied by a large increase in the NDVI from 2011 to 2016 (Fig. 4). 
These results are a strong indication that karst ecological restoration 
engineering contributed to the vegetation greening in southwest China 
during the last decade. 

The effectiveness of karst ecological restoration engineering in re-
gions underlain by pure carbonate rocks (limestone and dolomite) 
showed differences with that in other karst regions. The increase in the 
proportion of significant vegetation greening was greatest in the lime-
stone region, while the smallest increase in the proportion of significant 
greening was coupled with the largest increased proportion of signifi-
cant vegetation browning in the dolomite region (Table 2). The differ-
ence in the dissolution processes of limestone and dolomite may result in 
these deviations. Differential dissolution characteristics of limestone 
lead to the formation of underground fissures and conduits (Wang et al., 
2004b). Deep underlying bedrock chemistry can have substantial effects 
on vegetation growth (Hahm et al., 2014), and the subsoil nutrient and 
organic matter supplies are substantial (Richter and Billings, 2015). 
Although underground leakage of surface soil and a low soil formation 
rate in limestone result in severe karst rocky desertification in the region 
where limestone dominates, the lost surface soil will gather in the 
fractures of the rocks to provide important root habitats for vegetation 
growth (Yan et al., 2019), and vegetation takes up deep water through 

karst conduits to resist drought stress in limestone region (Peng et al., 
2019a, 2019b). Dolomite undergoes obvious overall dissolution, which 
occurs mainly on the surface and near-surface. Dolomite region is 
characterized by uniform and thin soil profiles and a high percolation 
rate. Compared with the limestone area, fewer underground interstices 
and conduits are observed in the dolomite region; consequently, a weak 
connection between vegetation and deep water and nutrients exist 
(Wang et al., 2004b). Therefore, afforestation is highly effective in the 
limestone area. 

4.4. Implications 

The large increase in the area of with an increasing NDVI in the karst 
regions during the conservation period indicates that karst rocky 
desertification is being ameliorated and the recovery of decertified karst 
areas is possible in southwest China. However, drought had the serious 
negative effects affecting vegetation growth. Our study indicated vege-
tation growth was generally more sensitive to drought in the karst re-
gions than in the nonkarst region. Additionally, emerging studies have 
shown that afforestation consumed additional soil water and led to 
unintended local and regional water shortages at the regional scale 
(Schwärzel et al., 2019; Škerlep et al., 2020). Therefore, long-term and 
sustainable karst ecological restoration are needed to reduce the karst 
ecosystem sensitivity to climate perturbations. 

The limestone region had successful afforestation, implying that 
limestone area can be preferred area for vegetation restoration in future 
afforestation projects. In addition, our study suggested the characteris-
tics of limestone and dolomite led to different vegetation growth envi-
ronment. Therefore, the effective projects of karst ecological restoration 
should be combined with the karst geological characteristics, such as 
planting trees with deep roots on the developed fissure structures of 
limestone region, planting herbaceous plants on dolomite area. 

Karst regions occupy 13.2% of the total global land area and supply 
20–25% of the drinking water worldwide (Ford and Williams, 2007; 
Parise et al., 2015). Karst rocky desertification, a global ecological 
problem, has occurred not only in southwest China but also in Europe, 
the Balkan Peninsula, Malaysia, Vietnam, Japan and Mexico and is 
expanding in Caribbean island countries, where demands on land re-
sources are high (Jiang et al., 2014). Ecological environmental impacts, 
such as the loss of cultivated soil, droughts, floods and degradation of 
ecosystems, result from karst rocky desertification, which further 
worsen living conditions and aggravates poverty. The successful prac-
tices of combatting karst rocky desertification in southwest China can be 
applied to areas where restoration is needed and comprehensive and 
sustainable development can be implemented. 

5. Conclusions 

We investigated the spatial–temporal patterns of vegetation greening 
and its drivers in southwest China. The results showed that the NDVI 
increased significantly at a rate of 0.0026 year− 1 from 2000 to 2016, 
indicating a general greening trend in vegetation, and had abruptly 

Fig. 10. Annual and cumulative afforestation area (a) and karst rocky desertification area (b) in southwest China.  

Table 3 
Pearson correlations between the NDVI and climate factors for different regions 
in 2000–2005 and 2006–2016.  

Regions Temperature Precipitation  

2000–2005 2006–2016 2000–2005 2006–2016 

Southwest China  0.055 − 0.022  0.037  0.075 
Nonkarst  0.053 − 0.014  0.047  0.061 
Karst  0.058 − 0.041  0.012  0.112 
Limestone  0.060 − 0.047  0.007  0.114 
Dolomite  0.085 − 0.085  0.004  0.116 
Mixed limestone/ 

dolomite  
0.062 − 0.006  0.009  0.147 

Impure carbonate rocks  0.048 − 0.031  0.023  0.094  
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increased in 2006. The area of significant vegetation greening was 
dramatically larger from 2006 to 2016 than from 2006 to 2016. Vege-
tation increased more in the karst regions, especially in limestone areas, 
than in the nonkarst region. Warming and precipitation promote vege-
tation growth under a moderate climate (2000–2005). In contrast, 
warming had negative effects on vegetation greening, and the positive 
effects between precipitation and vegetation greening, especially in the 
karst regions, were pronounced during dry periods (2006–2016). 
However, climate change generally had little direct impact on vegeta-
tion greening. The notable increases in significant vegetation greening 
were largely attributed to afforestation and the Grain for Green projects 
implemented through karst ecological engineering in 2005, which 
increased the forestland area by 72,571 km2 and decreased the cropland 
area by 10,485 km2 in southwest China. The karst ecological restoration 
measures in southwest China could serve as a reference for controlling 
karst rocky desertification in areas with similar environmental 
conditions. 
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