Research papers

Variations and Significance of Mg/Sr and $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$ in a Karst Cave System in Southwestern China

Jun-Yun Li, Ting-Yong Li, Chuan-Chou Shen, Tsai-Luen Yu, Tao-Tao Zhang, Yao Wu, Jing-Li Zhou, Chao-Jun Chen, Jian Zhang

PII: DOI:	S0022-1694(21)00187-6 https://doi.org/10.1016/j.jhydrol.2021.126140
Reference:	HYDROL 126140
To appear in:	Journal of Hydrology
Received Date:	12 November 2020

Revised Date:22 February 2021Accepted Date:23 February 2021

Please cite this article as: Li, J-Y., Li, T-Y., Shen, C-C., Yu, T-L., Zhang, T-T., Wu, Y., Zhou, J-L., Chen, C-J., Zhang, J., Variations and Significance of Mg/Sr and ⁸⁷Sr/⁸⁶Sr in a Karst Cave System in Southwestern China, *Journal of Hydrology* (2021), doi: https://doi.org/10.1016/j.jhydrol.2021.126140

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier B.V.

1	Variations and Significance of Mg/Sr and ⁸⁷ Sr/ ⁸⁶ Sr in a
2	Karst Cave System in Southwestern China
3	Jun-Yun Li ^{a, b} *, Ting-Yong Li ^c *, Chuan-Chou Shen ^d , Tsai-Luen Yu ^d , Tao-Tao Zhang ^{e,}
4	^f , Yao Wu ^a , Jing-Li Zhou ^a , Chao-Jun Chen ^a , Jian Zhang ^{a, g}
5	^a Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University,
6	Chongqing 400715, China
7	^b Key Laboratory of Karst Dynamics, MNR & Guangxi, Institute of Karst Geology, CAGS, Guilin, 541004,
8	China
9	^c Yunnan Key Laboratory of Plateau Geographical Processes & Environmental Changes, Faculty of Geography,
10	Yunnan Normal University, Kunming 650500, China
11	^d High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of
12	Geosciences, National Taiwan University, Taipei 10617, Taiwan
13	^e Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences,
14	Beijing, 100101, China
15	^f University of Chinese Academy of Sciences, Beijing100049, China
16	^g Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), UMR CNRS, 5805, Université
17	de Bordeaux, Pessac, France
18	
19	Revised to Journal of Hydrology 22, Feb., 2021
20	* Joint first and corresponding authors:
21	Jun-Yun Li: jxljy@swu.edu.cn
22	Ting-Yong Li: cdlity@163.com

23 ABSTRACT

24	The geochemical compositions of cave drip water and speleothems such as Mg, Sr, Mg/Ca,
25	Sr/Ca, and ⁸⁷ Sr/ ⁸⁶ Sr are considered to be responsive to changes in the local climate and
26	hydrological conditions. Systematic monitoring was performed on the Mg and Sr contents, Mg/Sr
27	ratio and ⁸⁷ Sr/ ⁸⁶ Sr of soil, soil water, cave drip water, and the active speleothems (AS) in Furong
28	Cave in Chongqing, southwest China, during 2009–2018 (A.D). The results were interpreted in
29	conjunction with the changes in the ⁸⁷ Sr/ ⁸⁶ Sr ratios to explore the main sources and controlling
30	factors of Sr and other trace elements in drip water. (1) Due to the decrease in winter and spring
31	rainfall, the residence time of water in the soil was prolonged, which resulted in increasing of Mg
32	and Sr concentrations and ⁸⁷ Sr/ ⁸⁶ Sr ratios in soil water. It indicates that the trace element contents
33	of soil water reflect seasonal changes of the rainfall. (2) The Mg and Sr contents were higher in
34	drip water than in the soil water, as well as the ⁸⁷ Sr/ ⁸⁶ Sr of the cave drip-water was closer to that
35	of the bedrock, which indicates that the overlying bedrock was the main source of the trace
36	elements in the drip water and the speleothems in Furong Cave. (3) Mg contents and Mg/Sr ratios
37	in drip water and AS showed decreasing trend, which may be affected by the shorter water-rock

38	contact time due to the increasing annual rainfall in the monitoring period. (4) The Sr contents in
39	AS might be affected by the growth rate of AS because of the similar increasing trend. (5) The Mg
40	and Sr contents and the Mg/Sr ratios of the drip water and AS did not exhibit seasonal variations
41	due to the mixing of the fissure water and complex hydrology condition of the overlying bedrock,
42	however, the geochemical indexes (Mg and Mg/Sr ratio) showed an opposite trend to the annual
43	rainfall variation. In short, this study highlights the responses of the changes of Mg, Sr and Mg/Sr
44	ratios of drip water and AS to the rainfall on the multi-year timescale, which contributes critical
45	insights into the paleoclimate interpretation of proxies of speleothems in the cave with hundreds
46	of meters' thick bedrock.

47 **KEYWORDS:** Karst hydrology, Soil water, Drip water, Active speleothems, Mg/Sr, ⁸⁷Sr/⁸⁶Sr

48 **INTRODUCTION**

49	When rainfall permeates through the soil, it dissolves CO ₂ to form carbonic acid, which in
50	turn dissolves the carbonate in the soil and bedrock. Drip water contains a variety of elements
51	coming from the soil and bedrock. The information of environment is captured by the trace
52	elements in drip water and speleothems in Karst caves (Fairchild et al., 2006, 2009). The Mg and
53	Sr concentrations and the Mg/Ca and Sr/Ca ratios in drip water and speleothems are often used to
54	explore climate and environmental changes (Hellstrom and McCulloch, 2000; McMillan et al.,
55	2005; Li et al., 2005; Johnson et al., 2006; Cruz et al., 2007; Griffiths et al., 2010; Wong et al.,
56	2011; Oster et al., 2012).
57	Studies tend to interpret possible annual to sub-annual climate signals in Mg/Ca, Sr/Ca and
58	Ba/Ca of speleothems (Roberts et al., 1998; Fairchild et al., 2001; Treble et al., 2003; McDonald
59	et al., 2004). It is possible that in caves covered by the bedrock tens/hundreds of meters thick (Bar-
60	Matthews et al., 1996), or in caves with large entrances and the cave environment sensitive
61	response to seasonal changes of temperature and humidity outside (Johnson et al., 2006), the
62	element ratios (Mg/Ca and Sr/Ca) of drip water and speleothems can respond to seasonal variations
63	of local temperature and rainfall. However, with regard to the caves covered by the bedrock tens

64	of meters thick, a large amount of old water is stored in the complex bedrock fissures of the epikarst
65	over the cave. The surface water is mixed in the process of infiltration, or due to the long flow
66	path, the precipitation cannot form drip water in time. It has been assumed that water geochemistry
67	variations due to seasonal changes in rainfall are unlikely to occur (Karmann et al., 2007).
68	Nevertheless, in order to use element ratios in speleothems from relatively deep caves to
69	reconstruct paleoclimate and paleoenvironment, it is concerned to know whether a climate signal
70	exists in the trace elements of drip water, how trace element concentrations vary in soil water, drip
71	water and active speleothem, as well as what the time scale of climate information change is
72	recorded.
73	Cave monitoring is an important method to investigate the deposition mechanism and factor
74	influencing the trace elements in drip water and speleothems (Fairchild et al., 2009). Previous
75	studies have suggested that factors such as the external environment outside cave (air temperature
76	and rainfall), the residence time of seepage water in the host rocks, PCP (prior calcite precipitation)
77	along seepage water flow paths and the chemical composition of soil and bed rock changes the
78	element ratios of drip water forming speleothems (Fairchild et al., 2000; Huang et al., 2001; Tooth
79	and Fairchild, 2003; Musgrove and Banner, 2004; Fairchild et al., 2006; Wong et al., 2011; Huang
80	et al., 2016; Zhang and Li, 2019). When performing a comprehensive study on a karst system, in

81	addition to monitoring the internal cave environment, it is necessary to take into account the factors
82	of local rainfall on recharge and on dissolution and precipitation processes occurring in karst
83	systems (Smart and Friederich, 1987; Fairchild et al., 2000).
84	This article provides the cave monitoring data performing in Furong Cave which is covered by
85	host rock with 300–500 m thick (Li et al., 2011) in southwestern China from 2009 to 2018 (A.D,
86	after here, all the years mentioned in this article refer to the year of A.D). The variations of the
87	contents of Mg and Sr and the ratios of Mg/Sr of soil, soil water, drip water and active speleothems
88	have been systematically analyzed in the paper. The main sources of the trace elements in
89	speleothems are explored according to the changes of ⁸⁷ Sr/ ⁸⁶ Sr values from soil to drip water,
90	which is helpful to analyze the response mechanism of ⁸⁷ Sr/ ⁸⁶ Sr values of soil water and drip water
91	to meteoric precipitation. We focus on discussing the relationship between the precipitation, soil,
92	epikarst hydrology and the contents of Mg, Sr and Mg/Sr ratios variations in soil water, drip water
93	and AS, and exploring the indexes response mechanisms to the changes of the surface environment
94	at the multi-year time scale. Decades of monitoring data will help us to clarify the climate and
95	environment significance of various proxy indexes in stalagmites from the deep caves and

96 reconstructing paleoclimate quantitatively.

97 **1. OVERVIEW OF THE STUDY AREA**

98	Furong Cave (29°13′44″ N, 107°54′13″ E) is located in the Wulong District, Chongqing City,
99	southwestern China (Figure 1A). The cave entrance is 480 m above sea level. The main hall is
100	about 2,700 m long and is 30-50 m wide and high. Furong Cave was developed in Middle
101	Cambrian limestone and dolomite formations. The region has a subtropical humid monsoon
102	climate with the annual mean temperature and rainfall of 17.8°C and 1,064 mm (from 2009 to
103	2018), respectively. About 70-80% of the precipitation is concentrated between May and October
104	(Li et al., 2011). In summer, the temperature is often high (maximum temperature >40°C) due to
105	Subtropical High over the western Pacific. The surface soil overlying the cave is yellow subtropical
106	mountain soil, which is 20–100 cm thick. The vegetation covering the cave are dominated by trees
107	and shrubs (Li et al., 2012).

108 2. SAMPLE COLLECTION AND ANALYSIS

2.1 Sample collection 109

110	On both sides of the valley above the main hall of Furong Cave, five soil profiles (SA-SE)
111	(Figure 1B) were chosen to collect soil samples from top to bottom at 5 cm intervals (except for
112	intervals of 10 cm in the SC profile). A total of 8 bedrock samples were collected at the bottom of
113	the SA-SE profiles. A water-collection tray made of PE was placed at the bottom of the soil profile
114	to collect the soil water. The detailed methods of the soil water collection were described in Li et
115	al. (2013). The soil water was collected in May-October, i.e., the period in which the regional
116	rainfall is concentrated (Li et al., 2013).
116 117	rainfall is concentrated (Li et al., 2013). Drip water in the main hall of Furong Cave was collected each month below six drip sites
116 117 118	rainfall is concentrated (Li et al., 2013). Drip water in the main hall of Furong Cave was collected each month below six drip sites (MP1-MP5, MP9) as shown in Figure 1C (Li et al., 2011; Li and Li, 2018). PE (Polyethylene)
 116 117 118 119 	rainfall is concentrated (Li et al., 2013). Drip water in the main hall of Furong Cave was collected each month below six drip sites (MP1-MP5, MP9) as shown in Figure 1C (Li et al., 2011; Li and Li, 2018). PE (Polyethylene) bottles (50 mL) were immersed in 1:1 HCl for 24 h, washed with deionized water, and then dried
 116 117 118 119 120 	rainfall is concentrated (Li et al., 2013). Drip water in the main hall of Furong Cave was collected each month below six drip sites (MP1-MP5, MP9) as shown in Figure 1C (Li et al., 2011; Li and Li, 2018). PE (Polyethylene) bottles (50 mL) were immersed in 1:1 HCl for 24 h, washed with deionized water, and then dried before collecting soil water. The soil water samples were acidized with 0.1 mL of 7 M HNO ₃ to

122	placed below each drip site to precipitate active speleothem (AS) samples and was replaced every
123	three months. The AS samples were taken back to the laboratory and air-dried naturally, then
124	weighed. By subtracting the weight of blank glass slide from the total weight, the mean AS
125	deposition weight was obtained.
126	2.2 Methods
127	2.2.1 Samples analysis methods
128	We pre-processed the solid samples (e.g. soil, bedrock, and AS samples) by $\mathrm{HF}\text{-}\mathrm{HClO}_4$
129	heating digestion method. Samples were digested by using a mixture including 22.5 M HF, 12.38
130	M HClO ₄ , 6 M HCl, and 14 M HNO ₃ to dissolve the solid particles completely. Then, the samples
131	where diluted with 0.1 M HCl is DE bettles for the enclusis of element concentration (Les 1000)

The treated solution and the soil water and drip water were analyzed to determine the contents 132 of Ca, Mg and Sr using an Optima 2100DV inductively coupled plasma optical emission 133 spectrometer (ICP-OES) (Perkin-Elmer, USA) with the detection limit of 1 µg/L and the relative

- error of less than 2% at the Geochemistry and Isotope Laboratory, School of Geographical 135
- 136 Sciences, Southwest University.

134

137	Bedrock, soil samples were weighed into the Teflon beakers and dissolved completely using
138	conventional HF-HNO3-HCl dissolution techniques in closed beakers. Soil water and drip water
139	were filtered with a 0.45 μ m filter and acidified with concentrated nitric acid. Sr was purified with
140	Sr-Spec resin exchange columns, following the procedure described in Jung et al. (2019). The
141	⁸⁷ Sr/ ⁸⁶ Sr ratios were analyzed using a Multi-Collector Inductively-Coupled plasma Mass
142	Spectrometer (MC-ICP-MS), Thermo Electron Finnigan Neptune, at the Department of
143	Geosciences, National Taiwan University. The measured ⁸⁷ Sr/ ⁸⁶ Sr ratios were normalized to
144	86 Sr/ 88 Sr = 0.1194 to correct for mass fractionation (Jung et al., 2019).

145 **2.2.2 Data analysis method**

Pearson correlation analysis was used to analyze the correlation of Mg and Sr in soil water,
drip water and AS, respectively. The correlation coefficients between Mg and Sr are showed in
the new Fig. 4.

Principal components analysis (PCA) was conducted to explore the driving factors of Mg and Sr changes in soil water (n=173), drip water (n=643) and AS (n=110). This method does not require normal distributions for large data sets (Kotowski, et al., 2020). The parameters are provided in Table 3.

153 **3 RESULTS**

154	According to Table 1, it was showed that the mean values $(\pm 1\sigma)$ of Mg and Sr contents and
155	the Mg/Sr ratios were rainfall <soil <drip="" and="" but="" content="" maximum="" mg="" of="" td="" the="" the<="" water="" water.=""></soil>
156	Mg/Sr ratios are in rock, then in soil, and the minimum is in AS. Although the maximum content
157	of Sr is in rock, but the minimum is in soil. The reasons were analyzed in section 4.1.
158	There were no seasonal variations of Mg and Sr contents in the soil water (Figure 2A and 2B)
159	as well as the Mg/Sr ratios (Figure 2C). Nevertheless, the Mg and Sr contents of the soil water are
160	significantly positively correlated (R=0.72, n=173, p <0.01) (Figure 4A), indicating that the
161	dissolution of soil Mg and Sr may have been affected by the same factors.
162	From 2009 to 2018, the Mg, Sr contents and the Mg/Sr ratios of drip water exhibited similar
163	trends at different drip sites, respectively (Figure 2D, 2E and 2F). The range of Mg was 6.66~47.65
164	mg/L (Table 1) and the monthly mean Mg contents showed an overall decrease trend (Figure 3A),
165	as well as the monthly mean of Mg/Sr ratios (Figure 3C). During the whole monitoring period, the
166	variation range of Sr concentration was between 0.021~0.077 mg/L (Table 1) and the trend line of
167	the monthly mean Sr contents remained stable (Figure 3B). It is worth noting that the precipitation

in the same period showed increasing trend (Figure 2G). 168

169	The Mg and Sr contents of the AS in Furong Cave underwent a two-stage change. (1) From
170	2009 to 2013, the Mg contents gradually decreased (mean content of $6,162 \pm 1,081 \ \mu g/g$), while
171	the Sr contents continuously increased (mean content of $45.57 \pm 15.98 \ \mu g/g$). (2) From 2014 to
172	2016, both the Mg and Sr contents remained relatively stable (mean Mg content of $7,327 \pm 1,314$
173	μ g/g and mean Sr content of 58.17 ± 12.29 μ g/g) (Figure 5A, 5B). The Mg/Sr ratios decreased
174	during 2009–2013 (mean ratio of 166.26 ± 61.98), while the ratios were relatively stable around a
175	mean of 134.44 ± 36.68 during 2014–2016 (Figure 5C).

176 **4 DISCUSSION**

4.1 Main factors affecting the contents of Mg and Sr in soil water 177

The overlying bedrock of Furong Cave is mainly composed of limestone and dolomite, which 178 are rich in Mg and poor in Sr (Table 1). The soil was developed from the bedrock. As water 179 infiltrates into the soil, a large number of elements in the soil are dissolved and lost to the soil 180 water, thereby resulting in the lower Mg and Sr contents of the soil compared with those of the 181

182 bedrock (Table 1).

183	Mg is more chemically active than Sr, and soil clay particles exhibit strong Sr adsorption
184	(Solecki and Michalik, 2006). Six types of limestone dissolution experiment showed that as the
185	solution concentration of Mg and Sr increased, the dissolution rate of Mg was faster than that of
186	Sr (Pracný et al., 2019). Therefore, after the surface rainwater infiltrates into the soil, the Mg and
187	Sr contents of the soil water increase, but more Mg is dissolved than Sr over the same time interval,
188	thereby leading to an increase in the Mg/Sr ratio of the soil water (Table 1).
189	The soil temperature and soil CO ₂ concentration exhibit seasonal trends similar to that of the air
190	temperature (Li et al., 2013; Li and Li, 2018). The mean Mg and Sr concentration of the soil water
191	in March-April was 14.76 \pm 8.35 mg/L and 0.023 \pm 0.012 mg/L, respectively, while in May-
192	October, the mean content of them was 12.80 ± 6.62 mg/L and 0.021 ± 0.009 mg/L, respectively.
193	It has been known that the amount of soil water was in good agreement with the amount of rainfall
194	(Li et al., 2013). During November to the following February, there was no soil water being
195	collected (Figures 2A, 2B) attributing to the less rainfall (Li and Li, 2018, Figure 3F). In the
196	seasons of low rainfall, infiltration water may stagnate for a long time in the soil porosities, which

197	contributes to dissolving more CO ₂ into the soil water and increasing the mineralization. When
198	precipitation increases, more water infiltrates into soil and may lead to flushing trough the
199	porosities. Therefore, the soil water collected in March-April had mixed the water which was held
200	up in the winter with more Mg and Sr contents. From May to October, more rainfall results in less
201	contact time between soil with infiltration water, which decreases the concentrations of Mg and Sr
202	in the soil water. According the analysis results of Pearson correlation, there is a good positive
203	correlation between Mg and Sr in soil water (Figure 4A). PCA analysis showed that two main
204	factors controlled the content of Mg and Sr in soil water, one of which accounted for 86% (Table
205	3). Residence time may be the most important factor affecting the contents of Mg and Sr in soil
206	water.
207	4.2 Analysis of control factors affecting Mg and Sr contents in drip water
208	The spring water above Furong Cave was characterized by $\delta^{13}C_{DIC}$ of -12‰ to -13‰ in summer
209	and -5‰ to -6‰ in winter which are in phase with the wet and dry climate season (Li, et al., 2011).
210	In other words, spring water can quickly respond to the change of precipitation. The mean contents
211	of Ca, Mg and Sr in spring water were all higher than those in the soil water but lower than those

212	in the drip water (Xiang et al., 2011). It is suggested that the infiltration water dissolves the
213	elements from the limestone when it flows through the epikarst. But the contact time between
214	spring water and the bedrock is short. Therefore, in the process of the infiltration water seeping
215	into the fissures of the deeper bedrocks, more Mg and Sr are dissolved which results to increasing
216	the Mg and Sr contents and the Mg/Sr ratios of the drip water (Table 1).
217	The air temperature in Furong Cave is 16.0~16.3°C throughout the year, which is similar to
218	the local annual mean temperature (Li et al., 2011). Therefore, as the fissure water flows through
219	the bedrock overlying Furong Cave, the effect of the temperature change on the element contents
220	of the fissure water is negligible. Rainfall is another local environmental factor which is often
221	taken into account in the process of fissure water dissolving the bedrock (Fairchild et al., 2000).
222	However, there are no seasonal variations of Mg and Sr contents in drip water, as well as Mg/Sr
223	ratios (Figure 2D, 2E and 2F). According the previous study in Furong Cave, many geochemical
224	indicators of drip water (such as δ^{18} O, $\delta^{13}C_{DIC}$, Mg/Ca and drip rate) lack seasonal variation due
225	to the complicated hydrology conditions over the cave (Li et al., 2011; Li and Li, 2018; Zhang and
226	Li, 2019), which have the function of regulating and storing fissure water. The fissure water are

227	mixed in the bedrock resulting in the seasonal signal of precipitation being indistinct. Nevertheless,
228	the drip rate responded to the annual rainfall (Zhang and Li, 2019). When the annual rainfall
229	increased gradually, the drip rate increased as well, which shortened the residence time of the
230	fissure water in the bedrock and in turn weakened the bedrock dissolution. It explained the
231	decreasing trend of the mean Mg contents and Mg/Sr ratios of the drip water (Figure 3A, 3C) with
232	the increasing rainfall during 2009 to 2018 (Figure 2G). Although there is a positive correlation
233	between Mg and Sr of drip water (R=0.45) (Figure 4B), the decreasing trend of the mean Sr content
234	was not obvious as that of Mg (Figure 3B). Only when the annual precipitation increased
235	significantly, such as in 2015 and 2016, the content of Sr decreased as that of Mg (Figure 2D, 2E,
236	2F). In addition, PCA analysis also found that the most important factor affecting Mg and Sr
237	accounted for 72.3% of two main factors in drip water, which was lower than in soil water (Table
238	3). It indicated that except the annual precipitation, the complicated hydrology condition in the
239	epikarst overlying Furong Cave may have an important impact on Mg and Sr in drip water.

240 **4.3 Variation characteristics and influencing factors of Mg and Sr in AS**

241	The Mg contents and Mg/Sr ratios of the AS decreased from 2009 to 2013, while Sr contents
242	increased. During 2014 to 2016, Mg, Sr and Mg/Sr ratios all remained relatively stable (Figure
243	5A, 5B and 5C). Though there is a positive correlation between Mg and Sr in AS, the correlation
244	coefficient is lower than that of soil water and drip water (Figure 4). PCA analysis showed that the
245	most important factor synchronously affecting Mg and Sr accounted for 68.9% of the whole
246	influencing factors (Table 3). The contents of Mg and Sr in speleothem are mainly controlled by
247	the precipitation process of calcite. In addition to the influence of Mg and Sr content in drip water,
248	the environment in the cave such as humidity, temperature, pCO_2 , dripping rate and the growth
249	rate of speleothem all have influence on Mg and Sr entering into the calcium carbonate crystal
250	(Paquette and Reeder, 1995; Goede et al., 1998; Fairchild et al., 2000; Hellstrom and McCulloch,
251	2000; Tooth and Fairchild, 2003; Treble et al., 2003; McDonald et al., 2004; Fairchild et al., 2006;
252	Johnson et al., 2006). Even for a given factor, the influences on element Mg and Sr are different.
253	For example, temperature has an effect on Mg, but has little effect on Sr (Gascoyne, 1983; Huang
254	and Fairchild, 2001). Experiments have shown that the Sr partition coefficient K_{Sr} is strongly
255	affected by the growth rate of calcium carbonate (Reeder and Grams, 1987; Paquette and Reeder,

256	1995; Stephenson et al., 2008). Gabitov et al. (2014) confirmed through experiments and GEM
257	(growth entrapment model) simulations that K_{Sr} increased by a factor of six and K_{Mg} decreased by
258	a factor of three as the calcium carbonate crystallization rate increased from 0.001 nm/s to 4 nm/s.
259	Therefore, the correlation coefficient between Mg and Sr in AS was 0.38 which might be related
260	to the comprehensive effect of multiple factors (Figure 4C).
261	The temperature and humidity in Furong Cave are stable all year around (Li, et al., 2011),
262	however, the pCO_2 in the cave has seasonal variation (Li and Li, 2018). The average growth rate
263	of six AS showed no seasonal characteristics but slowly increasing trend from 2009 to 2016
264	(Figure 5D), which is corresponded with the rainfall (Figure 5E). In section 4.2, it has been
265	discussed that the decreasing trend of Mg in drip water is related to the shortened water-rock
266	contact time with the increasing precipitation. The reduction of Mg in AS might be affected by the
267	content of Mg in drip water. In addition, with the increase of growth rate, more Sr and less Mg
268	may enter into the calcium carbonate crystals, which resulted in the decrease of Mg/Sr ratios in
269	AS (Figure 5A, 5B, 5C).

270 **4.4 Isotopic tracing with** ⁸⁷Sr/⁸⁶Sr

271	The Sr contents and ⁸⁷ Sr/ ⁸⁶ Sr ratios of speleothems are commonly used in paleoclimate
272	research (Banner et al., 1996; Goede et al., 1998; Bar-Matthews et al., 1999; Verheyden et al.,
273	2000; Frumkin and Stein, 2004). The ⁸⁷ Sr/ ⁸⁶ Sr of stalagmites can be used to reveal the impacts of
274	Sr sources on the ⁸⁷ Sr/ ⁸⁶ Sr of cave drip water (Faure and Mensing, 2005). Studies have shown that
275	the overlying soil, bedrock, dust materials, and ocean spray are the main sources of Sr (Banner et
276	al., 1996; Goede et al., 1998; Ayalon et al., 1999; Bar-Matthews et al., 1999; Verheyden et al.,
277	2000; Frumkin and Stein, 2004; Li et al., 2005; Shand et al., 2009). Furong Cave is located in the
278	mainland of China, about 850 km away from the nearest ocean (South China Sea). Therefore, the
279	influence of ocean spray is negligible. Moreover, the Daba Mountains in the north and east of
280	Sichuan Basin block the wind sand coming from the northwest, which results in the study region
281	less affected by wind sand. Additionally, agricultural origin (fertilizers) may change (usually
282	decrease) the isotope signature of Sr (Böhlke & Horan; 2000; Jiang et al., 2009; Jiang, 2011).
283	According to our investigation, the upper of Furong Cave is in a relatively primitive state covered
284	by dense vegetation and with little interference from human activities. Given that the Sr contents
285	(mean of 0.008 mg/L) of local rainwater are much lower than those of the soil and soil water (Table

286	1), only the soil and bedrock were considered when investigating the factors influencing of the
287	⁸⁷ Sr/ ⁸⁶ Sr values of drip water.
288	The mean 87 Sr/ 86 Sr value of the overlying soil of Furong Cave was 0.72805 ± 0.00222, which
289	is higher than the mean value of the underlying bedrock (0.70958 ± 0.00006) (Figure 6). The study
290	area has a subtropical humid monsoon climate, with high temperatures and rainfall in summer and
291	dense vegetation, and large amounts of CO ₂ and other acidic substances are produced by soil
292	respiration and microbial decomposition (Li et al., 2012; Li and Li., 2018). This results in strong
293	chemical weathering of the soil and bedrock. Yang et al. (2001) proposed that the soil ⁸⁷ Sr/ ⁸⁶ Sr
294	values reflect the intensity of the chemical weathering, with the ratios increasing with increasing
295	weathering intensity. Therefore, the Sr supplied by soil that has undergone chemical weathering
296	has higher ⁸⁷ Sr/ ⁸⁶ Sr values compared to that of the surrounding limestone (Li et al., 2005).
297	The ⁸⁷ Sr/ ⁸⁶ Sr values of all of the soil water and drip water fell between those of the soil and
298	the bedrock (Figure 6). When rainwater infiltrates into the soil, it not only dissolves soil debris,
299	but it also transports limestone debris with low ⁸⁷ Sr/ ⁸⁶ Sr ratios away (Banner et al., 1994; Borg
300	and Banner, 1996), resulting in lower soil water ⁸⁷ Sr/ ⁸⁶ Sr values compared with those of the soil

301 and bedrock.

302	The mean ⁸⁷ Sr/ ⁸⁶ Sr value of the cave drip water at drip sites MP1 and MP2 was closer to the
303	mean bedrock ⁸⁷ Sr/ ⁸⁶ Sr value than the mean soil water ⁸⁷ Sr/ ⁸⁶ Sr value (Table 2, Figure 6). It is
304	supposed that the evolution of ⁸⁷ Sr/ ⁸⁶ Sr ratios of groundwater from soil characteristics to that of
305	bedrock reflects the occurrence of water rock interaction, which is related to the residence time of
306	fissure water in bedrock (Musgrove and Banner, 2004; Oster et al., 2010; Wong et al., 2011;
307	Wortham et al., 2017). The overlying bedrock of Furong Cave is 300–500 m thick which leads to
308	longer water-rock interaction. In other words, the residence time of fissure water in the bedrock is
309	the main factor affecting the trace element composition of the drip water.
310	4.5 Environmental implications of ⁸⁷ Sr/ ⁸⁶ Sr
311	The mean ⁸⁷ Sr/ ⁸⁶ Sr value of the overlying soil of Furong Cave differs from that of the bedrock
312	by 0.01847 (Table 2), while the ⁸⁷ Sr/ ⁸⁶ Sr of the soil water and drip water are between that of the
313	soil and that of the bedrock (Figure 6), which reflected the change of the residence time of
314	infiltration water in the soil and bedrock (Musgrove and Banner, 2004; Shand et al., 2007; Wong

315	and Banner, 2010; Wong et al., 2011; Wortham et al., 2017). Comprehensive studies on the
316	⁸⁷ Sr/ ⁸⁶ Sr in modern stream waters, fast drip waters, and slow drip waters indicated that the faster
317	the velocity, the lower Sr isotope ratio (Banner et al., 1996). According to the values in Table 2,
318	the multi-month mean ⁸⁷ Sr/ ⁸⁶ Sr ratios of the soil water in soil profile SE in March–May and June–
319	September were 0.71700 ± 0.00114 and 0.71242 ± 0.00072 , respectively. The overlying soil water
320	of Furong Cave mainly originates from rainfall, and thus, it quickly responds to the changes of
321	rainfall (Li et al., 2013). From November to the following February, the soil water dries up due to
322	the reduction in rainfall. Therefore, the soil water in March–May contains infiltrated water that has
323	stayed in the soil for a long time and more detrital materials with high ⁸⁷ Sr/ ⁸⁶ Sr ratio were dissolved
324	in soil water. The soil water in June-September mainly originates from the rainfall in the same
325	month, resulting in the lower soil-water interaction time and a reduction of ⁸⁷ Sr/ ⁸⁶ Sr in soil water.
326	The cave drip water from sites MP1 and MP2 has similar ⁸⁷ Sr/ ⁸⁶ Sr values, which remained
327	stable throughout the year without obvious seasonal variations (Table 2). Due to the limited
328	number of ⁸⁷ Sr/ ⁸⁶ Sr measurements for the cave drip water and the short monitoring time (March-
329	December, 2015), the regular ⁸⁷ Sr/ ⁸⁶ Sr pattern of the cave drip-water cannot be determined in detail

- 330 Accordingly, the relationship between the ⁸⁷Sr/⁸⁶Sr of the cave drip water and the amount of
- rainfall is not addressed in this study.

332 **5 CONCLUSIONS**

During 2009-2018, the contents of Mg and Sr, Mg/Sr ratios and ⁸⁷Sr/⁸⁶Sr values from the soil 333 and soil water overlying the cave, to the drip water and AS in Furong Cave, southwest China, were 334 monitored. It is found that the trace element composition of the cave drip water mainly originates 335 from the bedrock basing on the increase of the Mg and Sr contents from the soil water to the cave 336 drip water, as well as the ⁸⁷Sr/⁸⁶Sr values of the cave drip-water closing to that of the bedrock. 337 There were no seasonal variations of the Mg and Sr contents and Mg/Sr ratios in drip water and 338 AS which are related to the complex karst system in the bedrock with hundreds of meters' 339 thickness, however, Mg contents and Mg/Sr ratios responded to the change of regional rainfall on 340 the multi-year timescale (Figure 2, 3 and 5). 341

342 Acknowledgements

343 This research was supported by the Open Project of Guangxi Key Science and Technology

344	Innovation Base on Karst Dynamics (KDL & Guangxi 202003) to JY. Li, the National Natural
345	Science Foundation of China (NSFC, No. 41772170; 42011530078), and the Fundamental
346	Research Funds for the Central Universities, China (No. XDJK2017A010 and No.
347	XDJK2020D005) to TY. Li. This work also was supported by the Science Vanguard Research
348	Program of the Ministry of Science and Technology (108-2119-M-002-012) and the Higher
349	Education Sprout Project of the Ministry of Education, Taiwan (108L901001) to CC., Shen.
350	Author contributions:
351	JY Li and TY Li designed the research and wrote the manuscript. CC Shen and TL Yu
352	complete the analyze of ⁸⁷ Sr/ ⁸⁶ Sr. TT., Zhang, Y., Wu, JL., Zhou, CJ Chen and J. Zhang did
353	the field work and experiments. All authors discussed the results and provided ideas to input the

354 manuscript.

355 **Competing interests:**

356 The authors declare no competing interests.

357 **References**

358	Ayalon, A., Bar-Matthews, M., Kaufman, A., 1999. Petrography, strontium, barium and uranium
359	concentrations, and strontium and uranium isotope ratios in speleothems as palaeoclimatic
360	proxies: Soreq Cave, Israel. Holocene 9, 715–722.

- 361 Banner, J.L., Musgrove, M. and Capo, R. C., 1994. Tracing groundwater evolution in a limestone
- aquifer using Sr isotopes: effects of multiple sources of dissolved ions and mineral-solution
 reactions. Geology 22, 687–690.
- Banner, J.L., Musgrove, M., Asmerom, Y., Edwards, R.L., Hoff, J.A., 1996. High-resolution
 temporal record of Holocene ground-water chemistry: tracing links between climate and
 hydrology. Geology 24(11): 1049–1053.
- Bar-Matthews, M., Ayalon A., Matthews, A., Sass, E. and Halicz, L., 1996. Carbon and oxygen
 isotope study of the active water carbonate system in a karstic Mediterranean cave:
 implications for paleoclimate research in semiarid regions. Geochimica et Cosmochimica.
 Acta 60, 337–347.
- Bar-Matthews, M., Ayalon, A., Kaufman, A., Wasserburg, G.J., 1999. The Eastern Mediterranean
 paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth and Planetary Science
 Letters 166, 85–95.
- Böhlke, J.K., and Horan, M., 2000. Strontium isotope geochemistry of groundwaters and streams
 affected by agriculture, locust grove, MD. Applied Geochemistry 15: 599–609.
- Borg, L. E., & Banner, J. L., 1996. Neodymium and strontium isotopic constraints on soil sources
 in Barbados, west Indies. Geochimica et Cosmochimica Acta, 60(21), 4193–4206.
- 378 Cruz Jr., F.W., Burns, S.J., Jercinovic, M., Karmann, I., Sharp, W.D., Vuille, M., 2007. Evidence

of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a late

380 Pleistocene stalagmite. Geochimica et Cosmochimica Acta 71, 2250–2263.

- Fairchild, I.J., Baker, A., Borsato, A., Frisia, S., Hinton, R.W., McDermott, F., Tooth, A.F., 2001.
 High-resolution, multipletrace-element variation in speleothems. Journal of the Geological
 Society, London 158, 831–841.
- Fairchild, I.J., Borsato, A., Tooth, A.F., Frisia, S., Hawkesworth, C.J., Huang, Y., McDermott, F.,
- Spiro, B., 2000. Controls on trace element (Sr–Mg) compositions of carbonate cave waters:
 implications for speleothem climatic records. Chemical Geology 166, 255–269.
- 387 Fairchild, I.J., Smith, C.L., Baker, A., Fuller, L., Spötl, C., Mattey, D., McDermott, F., E.I.M.F.,
- 2006. Modification and preservation of environmental signals in speleothems. Earth-Science
 Reviews, 75: 105–153.
- Fairchild, I.J., Treble, P., 2009. Trace elements in speleothems as recorders of environmental
 change. Quaternary Science Reviews 28, 449–468.
- 392 Faure, G., Mensing, T.M., 2005. Isotopes: Principles and Applications. Wiley, Hoboken.
- Frumkin, A., Stein, M., 2004. The Sahara-East Mediterranean dust and climate connection
 revealed by strontium and uranium isotopes in a Jerusalem speleothem. Earth and Planetary
 Science Letters 217, 451–464.
- Gabitov, R.I., Sadekov, A., Leinweber, A., 2014. Crystal growth rate effect on Mg/Ca and Sr/Ca
 partitioning between calcite and fluid: An in situ approach. Chemical Geology 367:70–82.
- Gascoyne, M., 1983. Trace element partition coefficients in the calcite-water system and their
 paleoclimatic significance in cave studies. Journal of Hydrology 61, 213-222.
- 400 Goede, A., McCulloch, M., McDermott, F., Hawkesworth, C., 1998. Aeolian contribution to
- 401 strontium and strontium isotope variations in a Tasmanian speleothem. Chemical Geology
 402 149, 37–50.
- 403 Griffiths, M.L., Drysdale, R.N., Gagan, M.K., Frisia, S., Zhao, J.X., Ayliffe, L.K., Hantoro, W.S.,

404	Hellstrom, J.C., Fischer, M.J., Feng, Y.X., Suwargadi, B.W., 2010. Evidence for Holocene
405	changes in Australian–Indonesian monsoon rainfall from stalagmite trace element and stable
406	isotope ratios. Earth and Planetary Science Letters 292 (1–2), 27–38.
407	Hellstrom, J., McCulloch, M.T., 2000. Multi-proxy constraints on the climatic significance of trace
408	element records from a New Zealand speleothem. Earth and Planetary Science Letters 179,
409	287–297.
410	Huang, W., Wang, Y.J., Cheng, H., Edwards, R.L., Shen, C.C., Liu, D., Shao, Q., Deng, C., Zhang,
411	Z., Wang, Q., 2016. Multi-scale Holocene Asian Monsoon variability deduced from a twin-
412	stalagmite record in southwestern China. Quat. Res. 86 (1), 34-44.
413	Huang, Y., Fairchild, I.J., 2001. Partitioning of Sr ²⁺ and Mg ²⁺ into calcite under arstanalogue
414	experimental conditions. Geochimica et Cosmochimica Acta 65, 47-62.
415	Jiang, Y.J., 2011. Strontium isotope geochemistry of groundwater affected by human activities in
416	Nandong underground river system, china. Applied Geochemistry 26(3), 371–379.
417	Jiang, Y.J., W, Y.X., Yuan, D.X., 2009. Human impacts on karst groundwater contamination
418	deduced by coupled nitrogen with strontium isotopes in the nandong underground river
419	system in yunan, china. Environmental Science & Technology 43 (20): 7676–7683.
420	Johnson, K.R., Hu, C., Belshaw, N.S., Henderson, G.M., 2006. Seasonal trace-element and stable-
421	isotope variations in a Chinese speleothem: the potential for high resolution paleomonsoon
422	reconstruction. Earth and Planetary Science Letters 244(1–2), 394–407.
423	Jung, C.C., Chou, C.K., Lin, C.Y., Shen, C.C., Lin, Y.C., Huang, Y.T., Tsai, C.Y., Yao, P.H.,
424	Huang, C.R., Huang, W.R., Chen, M.J., Huang, S.H., Chang, S.C., 2019. C-Sr-Pb isotopic
425	characteristics of $PM_{2.5}$ transported on the East-Asian continental outflows. Atmospheric
426	Research 223, 88-97.

427	Karmann, I., Cruz, F.W., Viana, O., Burns, S.J., 2007. Climate influence on geochemistry
428	parameters of waters from Santana-Pérolas cave system, Brazil. Chemical Geology, 244(1-
429	2), 232–247.

- Kotowski, T., Motyka, J., Knap, W., Bielewski, J., 2020. 17-year study on the chemical
 composition of rain, snow and sleet in very dusty air (Krakow, Poland). Journal of Hydrology
 582, 124543.
- Li, H., Ku, T., You, C., Cheng, H., Edwards, R., Ma, Z., Tsai, W., Li, M., 2005. ⁸⁷Sr/⁸⁶Sr and Sr/Ca
 in speleothems for paleoclimate reconstruction in Central China between 70 and 280 kyr ago.

435 Geochimica & Cosmochimica Acta 69, 3933–3947.

- 436 Li, J.-Y., Li, T.-Y., 2018. Seasonal and annual changes in soil/cave air pCO_2 and the $\delta^{13}C_{DIC}$ of
- 437 cave drip water in response to changes in temperature and rainfall. Applied Geochemistry 93,
 438 94–101.
- Li, J.Y., Li, T.Y., Wang, J.-L., Xiang, X.X., Chen, Y.X., Li, X., 2013. Characteristics and
 environmental significance of Ca, Mg and Sr in the soil infiltrating water overlying the Furong
 Cave, Chongqing, China. Science China: Earth Sciences 56(12), 2126–2134.
- 442 Li, T.Y., Li, H.C., Xiang, X.J., Kuo, T.S., Li, J.Y., Zhou, F.L., Chen, H.L., Peng, L.L., 2012.
- 443 Transportation characteristics of δ^{13} C in the plants-soil-bedrock-cave system in Chongqing 444 karst area. Science China Earth Sciences 55: 685–694.
- 445 Li, T.-Y., Shen, C.-C., Li, H.-C., Li, J.-Y., Chiang, H.-W., Song, S.-R., Yuan, D.-Y., Chris, D.J.
- 446 Gao, L.-P., Zhou, L.-P., Wang, J.-L., Ye, M.-Y., Tang, L.-L., Xie, S.-Y., 2011. Oxygen and
- 447 carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing,
- 448 China. Geochimica & Cosmochimica Acta 75: 4140–4156.
- 449 Lu, R.K., 1999. Analysis Methods of Soil Agricultural Chemistry (in Chinese). Beijing: China

- 450 Agricultural Science and Technology Publishing House.147–211.
- 451 McDermott, F., 2004. Palaeo-climate reconstruction from stable isotope variations in speleothems:
- 452 a review. Quaternary Science Reviews 23, 901–918.
- 453 McMillan, E.A., Fairchild, I.J., Frisia, S., Borsato, A., McDermott, F., 2005. Annual trace element
- 454 cycles in calcite–aragonite speleothems: evidence of drought in the western Mediterranean
- 455 1200–1100 yr BP. Journal of Quaternary Science 20 (5), 423–433.
- Musgrove, M., Banner, J.L., 2004. Controls on the spatial and temporal variability of vadose
 dripwater geochemistry: Edwards Aquifer, central Texas. Geochimica & Cosmochimica Acta
- 458 68 (5), 1007–1020.
- 459 Oster, J.L., Montañez, I.P., Guilderson, T.P., Sharp, W.D., Banner, J.L., 2010. Model-ing
 460 speleothem δ13C variability in a central Sierra Nevada cave using 14C and 87Sr/86Sr.
 461 Geochimica & Cosmochimica Acta 74: 5228–5242.
- 462 Oster, J.L., Montañez, I.P., Kelley, N.P., 2012. Response of a modern cave system to large seasonal
 463 precipitation variability. Geochimica & Cosmochimica Acta 91, 92–108.
- Paquette, J., Reeder, R.J., 1995. Relationship between surface structure, growth mechanism, and
 trace element incorporation in calcite. Geochimica & Cosmochimica Acta 59, 735–749.
- 466 Pracný, P., Faimon, J., Všianský, D., Přichystal, A., 2019. Evolution of Mg/Ca Ratios During the
 467 experimental dissolution of limestone. Chemical Geology 523:107–120.
- Reeder, R.J., Grams, J.C., 1987. Sector zoning in calcite cement crystals: implications for trace
 element distributions in carbonates. Geochimica & Cosmochimica Acta 51, 187–194.
- 470 Shand, P., Darbyshire, D.P.F., Gooddy, D.C., Haria, A.H., 2007. ⁸⁷Sr/⁸⁶Sr as an indicator of flow
- 471 paths and weathering rates in the Plynlimon experimental catchments, Wales. UK. Chem.
- 472 Geol. 236, 247–265.

473	Shand, P., Darbyshire, D.P.F., Love, A.J., Edmunds, W.M., 2009. Sr isotopes in natural waters:									
474	applications to source characterisation and water-rock interaction in contrasting									
475	landscapes. Applied Geochemistry, 24(4), 574–586.									
476	Smart, P. L and Friederich, H. 1987. Water movement and storage in the unsaturated zone of a									
477	maturely karstified aquifer, Mendip Hills, England. In Proceedings of the Conference on									
478	Environmental Problems in Karst Terrains and their Solutions. 59-87.									
479	Solecki, J., Michalik, S., 2006. Studies of ⁸⁵ Sr adsorption on grain fractions of soil. Journal of									
480	Radio analytical and Nuclear Chemistry 267(2): 271–278.									
481	Stephenson, A.E., DeYoreo, J.J., Wu, L., Wu, K.J., Hoyer, J., Dove, P.M., 2008. Peptides enhance									
482	magnesium signature in calcite: insights into origins of vital effects. Science 322, 724-727.									
483	Tooth, A.F., Fairchild, I.J., 2003. Soil and karst aquifer hydrological controls on the geochemical									
484	evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland. Journal of									
485	Hydrology 273, 51–68.									
486	Treble, P., Shelley, J.M.G., Chappell, J., 2003. Comparison of high resolution sub-annual records									
487	of trace elements in a modern (1911-1992) speleothem with instrumental climate data from									
488	southwest Australia. Earth and Planetary Science Letters 216, 141–153.									
489	Verheyden, S., Keppens, E., Fairchild, I.J., McDermott, F., Weis, D., 2000. Mg, Sr and Sr isotope									
490	geochemistry of a Belgian Holocene speleothem: implications for paleoclimate									
491	reconstructions. Chemical Geology 169, 131–144.									
492	Wong, C. I., Banner, J. L., Musgrove, M., 2011. Seasonal dripwater Mg/Ca and Sr/Ca variations									
493	driven by cave ventilation: Implications for and modeling of speleothem paleoclimate records.									
494	Geochimica & Cosmochimica Acta 75, 3514–3529.									
495	Wong, C., Banner, J.L., 2010. Response of cave air CO ₂ and drip water to brush clearing in central									

- 496 Texas: implications for recharge and soil CO₂ dynamics. Journal of Geophysical Research
 497 115, G04018. doi: 10.1029/2010JG001301.
- 498 Wortham, B.E., Wong, C.I., Silva, L.C.R., McGee, D., Montañez, I.P., Troy Rasbury, E., Rasbury,
- 499 E.T., Cooper, K.M., Sharp, W.D., Glessner, J.G., Santos, R.V., 2017. Assessing response of
- local moisture conditions in central brazil to variability in regional monsoon intensity using
 speleothem ⁸⁷Sr/ ⁸⁶Sr values. Earth & Planetary Science Letters, 463(Complete), 310–322.
- Xiang, X.J., Li, T.Y., Wang, J.L., Li, J.Y., Chen, Y.X., Zhou, F.L., Huang, X., 2011. Variation
 characteristics of elements in soil infiltrating water-drips around Furong Cave of Chongqing
 and their implications. Journal of Soil and Water Conservation 25 (3), 121-125.
- Yang, J.D., Chen, J., Tao, X.C., Li, C.L., Ji, J.F., Chen, Y., 2001. Sr isotope ratios of acid leached
 loess residues from Luochuan, China: A tracer of continental weathering intensity over the
 past 2.5 Ma. Geochemical Journal 35(6): 403–412 .
- Zhang, J., and Li, T. -Y., 2019. Seasonal and interannual variations of hydrochemical
 characteristics and stable isotopic compositions of drip waters in Furong Cave, Southwest
 China based on 12 years' monitoring. Journal of Hydrology 572: 40–50.
- 511

512 **Captions**

Figure 1 (A) Location of the study area, Furong Cave in Southwest China. The circle indicates the
location of Chongqing City. The black solid dot indicates the location of Furong Cave.
Yangtze River flows across Chongqing municipality city from the southwest to the northeast
(modified after Li et al., 2011). (B) Distribution of soil profiles and the monitoring sites of

soil water over Furong Cave (SA-SE, the black triangles). The black shadow indicates the
Furong Cave; contours with elevations for this area are shown (modified after Li et al., 2013).
(C) Sketch map of the Furong Cave. Distribution of the monitoring sites: MP1-MP5 and MP9
for drip water (black solid stars). The sites of MP1-MP3 and MP9 are all located in the Great
Hall. MP4 and MP5 are in the corridor, approximately 600 m from the entrance. The dashed
line shows the tour route and the Great Hall indicates the inner part of the cave (modified
after Li et al., 2011, 2018).

Figure 2 In-phase variations of trace elements and Mg/Sr time series in soil water and drip water 524 at Furong Cave. (A-C) Comparisons of the concentration of Mg (A), Sr (B) and the ratios of 525 Mg/Sr (C) of soil water (no data in 2013) above Furong Cave in the period of 2009-2016 526 (A.D.). (D-F) the concentration of Mg (D), Sr (E) and the ratios of Mg/Sr (F) of drip water 527 528 during 2009-2018 (A.D.). (G) monthly average temperature (red curve) and annual precipitation (blue columns) outside of Furong Cave. The gray dashed lines with arrows 529 denote the long-term trends for changes of precipitation. There was no obvious seasonal 530 change in the contents of Mg and Sr and Mg/Sr ratios in soil water. 531

Figure 3 The variation trend of the monthly average contents of Mg (A) and Sr (B) and Mg/Sr ratios (C) in drip water during 2009 to 2018. The red dotted line in the figure is automatically generated by statistical analysis, indicating the variation trend of the average values. It is showed that the decreasing trend of the monthly average Mg contents and Mg/Sr ratios of the drip water (Figure 3A, 3C) with the increasing rainfall during 2009 to 2018 (Figure 2G), but the contents of Sr have no obvious change (Figure 3B).

Figure 4 The significant positive correlation between the concentration of Mg and Sr in soil water
(A) above Furong Cave, drip water (B) and AS (C) in the cave.

540	Figure 5 Time series of the concentration of Mg (A), Sr (B), the ratios of Mg/Sr (C) and the
541	average growth rate of active speleothem with standard error of the mean (uncertainty bars)
542	(D). The interrupted dashed red line in panel (D) indicates the trend of average growth rate
543	of active speleothem, which was consistent with the trend of annual precipitation outside of
544	Furong Cave (E). The gray dashed lines with arrows in (A, B, C, E) denote the trends for
545	changes in the monitoring parameters.

546 Figure 6 ⁸⁷Sr/⁸⁶Sr values of bedrock (n=2), soils (n=12), and soil water (n=6) above

547 Furong Cave, and drip water (n = 19) in Furong Cave. Uncertainty bars are standard error

of the mean values. Complete data are listed in Table 2.

549 Abstract

The geochemical compositions of cave drip water and speleothems such as Mg, Sr, Mg/Ca, Sr/Ca, and ⁸⁷Sr/⁸⁶Sr are considered to be responsive to changes in the local climate and hydrological conditions. Systematic monitoring was performed on the Mg and Sr contents, Mg/Sr ratio and ⁸⁷Sr/⁸⁶Sr of soil, soil water, cave drip water, and the active speleothems (AS) in Furong Cave in Chongqing, southwest China, during 2009–2018 (A.D). The results were interpreted in conjunction with the changes in the ⁸⁷Sr/⁸⁶Sr ratios to explore the main sources and controlling factors of Sr and other trace elements in drip water. (1) Due to the decrease in winter and spring

557	rainfall, the residence time of water in the soil was prolonged, which resulted in increasing of Mg
558	and Sr concentrations and ⁸⁷ Sr/ ⁸⁶ Sr ratios in soil water. It indicates that the trace element contents
559	of soil water reflect seasonal changes of the rainfall. (2) The Mg and Sr contents were higher in
560	drip water than in the soil water, as well as the ⁸⁷ Sr/ ⁸⁶ Sr of the cave drip-water was closer to that
561	of the bedrock, which indicates that the overlying bedrock was the main source of the trace
562	elements in the drip water and the speleothems in Furong Cave. (3) Mg contents and Mg/Sr ratios
563	in drip water and AS showed decreasing trend, which may be affected by the shorter water-rock
564	contact time due to the increasing annual rainfall in the monitoring period. (4) The Sr contents in
565	AS might be affected by the growth rate of AS because of the similar increasing trend. (5) The Mg
566	and Sr contents and the Mg/Sr ratios of the drip water and AS did not exhibit seasonal variations
567	due to the mixing of the fissure water and complex hydrology condition of the overlying bedrock,
568	however, the geochemical indexes (Mg and Mg/Sr ratio) showed an opposite trend to the annual
569	rainfall variation. In short, this study highlights the responses of the changes of Mg, Sr and Mg/Sr
570	ratios of drip water and AS to the rainfall on the multi-year timescale, which contributes critical
571	insights into the paleoclimate interpretation of proxies of speleothems in the cave with hundreds

572 of meters' thick bedrock.

573

574 Author contributions:

575 J.-Y Li and T.-Y Li designed the research and wrote the manuscript. C. -C Shen and T.-L Yu

576 complete the analyze of ⁸⁷Sr/⁸⁶Sr. T.-T., Zhang, Y., Wu, J.-L., Zhou, C. -J Chen and J. Zhang did

577 the field work and experiments. All authors discussed the results and provided ideas to input the

578 manuscript.

579

580

581

583

586

587 Table 1 Mean concentration of Mg, Sr and Mg/Sr ratios in bedrocks, soil, soil

588

water, drip water and active speleothem from Furong Cave.

	n	Mg			Sr			Mg/Sr		
ipie (unit)		max	mean	min	max	mean	min	max	mean	
ng/L)	6	0.285	0.214±0.069	0.123	0.015	0.008 ± 0.004	0.003	46	29 ± 9	
g/g)	56	96459	18929 ± 16921	5999	79.00	47.74±9.4	25.80	1221	371 ± 233	
ater (mg/L)	174	38.31	13.22 ± 6.78	0.92	0.067	0.022±0.009	0.003	1181	617 ± 223	
µg/g)	8	145158	131117 ± 8927	119172	186	125 ± 38	75	1940	1152 ± 411	
rater (mg/L)	643	47.65	35.94±5.56	6.66	0.077	0.045 ± 0.007	0.021	1470	800 ± 133	
speleothems ($\mu g/g$)	114	11793	6770±1336	3931	87.87	49.88±16.42	19.34	341	150±53	

Month of Sampling in 2015 (A.D)	Sample ID	Sample Type	Detail information	⁸⁷ Sr/ ⁸⁶ Sr	Mean of ⁸⁷ Sr/ ⁸⁶ Sr
May	SE-R	Bedrock	profile SE	0.70962	0 70958+ 0 00006
Iviay	SD-R	Deuroek	profile SD	0.70954	0.70738± 0.00000
	SE01		0-3 cm	0.73438	
	SE03		6-9 cm	0.73005	
May	SE08	Soil	20-22 cm	0.72953	
	SE13		30-32 cm	0.72954	
	SE17		38-40 cm	0.72889	
			Mean value	0.73048 ± 0.00222	
	SD01		0-5 cm	0.72668	0.72805 ± 0.00222
	SD03		10-15 cm	0.72685	
May	SD07	Soil	30-35 cm	0.72857	
Widy	SD11	5011	50-55 cm	0.72673	
	SD15		66-69 cm	0.72310	
	SD20		81-84 cm	0.72418	
			Mean value	0.72602 ± 0.00200	
March	SE-201503			0.71619	
May	SE-201505			0.71781	
June	SE-201506	Soil	profile SF	0.71349	0.71394 ± 0.00249
July	SE-201507	water	prome 5E	0.71206	0.71551= 0.00215
August	SE-201508			0.71192	
September	SE-201509			0.71219	
March	MP1-201503			0.71081	
April	MP1-201504			0.71060	
May	MP1-201505			0.71098	
June	MP1-201506			0.71068	
July	MP1-201507	Drip	MP1	0.71027	
August	MP1-201508	water		0.71023	
September	MP1-201509			0.71076	
October	MP1-201510			0.71028	0.71050 + 0.00020
November	MP1-201511			0.71028	$0./1059 \pm 0.00038$
December	MP1-201512		Maan valua	0./110/	
A	MD2 201504		wiean value	0.71000 ± 0.00045	
Apill May	MD2 201505			0.71042	
Iviay	MP2 201505	Drin		0.71118	
June	MP2_201500	water	MP2	0.71110	
Jury	MD2_20150/	water		0.71034	
Augusi Sentember	MP2_201500			0.71040	
September	1411 2-201309			U. / 105 -	

Table 2 ⁸⁷Sr/⁸⁶Sr ratios in bedrocks, soil, soil water and drip water

October	MP2-201510	0.71040	
November	MP2-201511	0.71035	
December	MP2-201512	0.71034	
		Mean value 0 71052 + 0 00030	

591Table 3 PCA analysis results on Mg and Sr data of soil water, drip water and

AS (active speleothem)

	Soil water		Drip	water	AS		
	(n=173) *Comp.1 Comp.2		(n=	643)	(n=110)		
			Comp.1 Comp.2		Comp.1	Comp.2	
Standard deviation	1.311	0.528	1.202	0.743	1.174	0.788	
Proportion of Variance	0.860	0.140	0.723	0.277	0.689	0.311	
Cumulative Proportion	0.860	1.00	0.723	1.00	0.689	1.00	

*Comp.1, Comp.2, represent the calculated principal components, Standard deviation represents the Standard deviation of each principal component, Proportion of Variance represents the contribution rate of each principal component, Cumulative Proportion represents the Cumulative contribution rate of each principal component.

597

598

599

Highlights

1 Ten years monitoring work in a karst cave overlying 300-500 meters' bedrock.

602 2 Bedrock is the main source of the trace elements in the drip water and speleothems.

603 3 Increase rainfall results in decreased Mg, Mg/Sr ratio, and increase in Sr content.

604

600