# 漓江地表水体有机碳来源

赵海娟1,2,肖琼2\*,吴夏2,刘凡2,苗迎2,蒋勇军1

(1. 西南大学地理科学学院, 岩溶环境重庆市重点实验室, 重庆 400715; 2. 中国地质科学院岩溶地质研究所/国土资源部、广西岩溶动力学重点实验室, 桂林 541004)

摘要:科学辨识河流有机碳来源是碳循环研究的关键.本文选取典型岩溶流域漓江流域为研究对象,通过同位素示踪法、相关分析法、端元混合模型,利用碳稳定同位素、C/N 对其 2016 年 7~9 月有机碳来源进行研究.结果表明:① DIC 浓度空间分布特征为:岩溶区 > 岩溶区与非岩溶区的混合区 > 非岩溶区; 干流区 DIC 浓度从上游到下游递增,主要受控于流域碳酸盐岩的空间分布比例.② DOC 是构成漓江水体 TOC 的主体, TOC 来源以内源有机碳为主,内源碳浓度空间分布特征为:岩溶区 > 混合区 > 非岩溶区,可能与岩溶区水生植物丰茂、碳酸酐酶活性较强有关, TOC 中内源碳的浓度介于 1.02~5.14  $mg\cdot L^{-1}$ , 平均为 2.54  $mg\cdot L^{-1}$ ; TOC 中内源碳的比例空间分布差异不大,平均为 73.07%.③ POC 浓度、POC 中内源碳的浓度及 POC 中内源碳的比例空间分布差异不大,POC 来源以外源碳为主,POC 中内源有机碳浓度介于 0.01~0.16  $mg\cdot L^{-1}$ ,平均为 0.05  $mg\cdot L^{-1}$ ,水生生物量对漓江流域 POC 贡献平均为 17.31%.④ DOC 浓度及内源 DOC 浓度空间分布均为:岩溶区 > 混合区 > 非岩溶区,DOC 主要来源于水生生物的初级生产力,DOC 中内源碳的浓度介于 0.97~5.10  $mg\cdot L^{-1}$ ,平均为 2.48  $mg\cdot L^{-1}$ ; DOC 中内源碳的比例空间分布差异不大,平均为 79.51%.研究水生光合生物对流域有机碳的影响,可以为岩溶碳汇稳定性科学问题的解答提供基础.

关键词: 漓江; 碳稳定同位素; C/N; 溶解有机碳; 颗粒有机碳; 来源

中图分类号: X522 文献标识码: A 文章编号: 0250-3301(2017)08-3200-09 DOI: 10.13227/j. hjkx. 201701176

# Sources of Organic Carbon in the Surface Water of Lijiang River

ZHAO Hai-juan<sup>1,2</sup>, XIAO Qiong<sup>2\*</sup>, WU Xia<sup>2</sup>, LIU Fan<sup>2</sup>, MIAO Ying<sup>2</sup>, JIANG Yong-jun<sup>1</sup>

(1. Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, China; 2. Key Laboratory of Karst Dynamics, Ministry of Land and Resources/Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China)

Abstract: This study selected a larger typical karst basin, that of Lijiang River, as the research subject and studied the sources of organic carbon in the Lijiang basin in July, August, and September in 2016 by an isotope tracer method, a correlational analysis method, and endmember mixture model, using a stable isotope of carbon and the organic carbon to nitrogen ratio. The results showed the following. ① The spatial distribution characteristics of DIC concentration were as follows: karst area > karst and non-karst mixed area > non-karst area. The content of DIC downstream was higher than upstream. The spatial distribution of DIC concentration was mainly controlled by the distribution of carbonate rocks in the Lijiang basin. 2 DOC was the main part of TOC in the Lijiang basin. TOC was mainly derived from the primary productivity of aquatic organisms. The spatial distribution characteristics of autochthonous organic carbon content were as follows: karst area > karst and non-karst mixed area > non-karst area, which may be related to more lush aquatic plants in the karst area than in the non-karst area and the carbonic anhydrase activity in the karst area being higher than in the non-karst area. The content of autochthonous organic carbon in the TOC ranged from 1.02 to 5.14 mg·L<sup>-1</sup>, with an average of 2.54 mg·L<sup>-1</sup>. There was no significant spatial difference of the proportion of autochthonous organic carbon in the TOC; it ranged from 51.68% to 85.99%, with an average of 73.07%. 3 The POC concentration, the content of autochthonous organic carbon in the POC, and the proportion of autochthonous organic carbon in the POC had no significant spatial differences. The main source of POC was allochthonous organic carbon, and the content of autochthonous organic carbon in the POC ranged from 0.01 to 0.16 mg·L<sup>-1</sup>, with an average of 0.05 mg·L<sup>-1</sup>. The proportion of autochthonous organic carbon in the POC ranged from 3.69% to 41.94%, with an average of 17.31%. 4 The spatial distribution of the content of DOC and autochthonous organic carbon in the DOC are as follows: karst area > karst and non-karst mixed area > non-karst area. DOC mainly came from the primary productivity of aquatic organisms. The content of autochthonous organic carbon of the DOC ranged from 0.97 to 5.10 mg·L<sup>-1</sup>, with an average of 2.48 mg·L<sup>-1</sup>. The spatial distribution of the proportion of autochthonous organic carbon in the DOC had no obvious difference and ranged from 54.43% to 94.69%, with an average of 79.51%. Studying the influence of aquatic photosynthetic organisms on organic carbon in rivers can provide basis for scientific problem solution of the stability of karst carbon sinks.

收稿日期: 2017-01-20; 修订日期: 2017-03-13

基金项目:中国地质科学院基本科研业务费专项(YYWF201639);广西自然科学基金项目(2016GXNSFAA380064);重庆市自然科学基金项目(CSTC2016JCYJYS0003)

作者简介: 赵海娟(1993~),女,硕士研究生,主要研究方向为资源环境与 GIS 应用,E-mail:18189538930@163.com

\* 通信作者, E-mail: xiaoqiong-8423@163.com

Key words: Lijiang basin; stable isotope of carbon; C/N; dissolved organic carbon; particulate organic carbon; sources

河流作为连接陆地与海洋两大碳库的重要通 道,研究其碳输送是全球碳循环研究的一个重要环 节[1]. 根据组成形态,河流碳一般可分为溶解无机 碳(dissolved inorganic carbon, DIC)、溶解有机碳、 颗粒有机碳、颗粒无机碳(particulate inorganic carbon, PIC),4种形式的碳在水体内部相互转化: PIC 可溶解成为 DIC, DOC 可降解为 DIC, 水生植物 生长可利用 DIC 生成 POC、DOC<sup>[2]</sup>. 每年由陆地生 态系统通过河流向海洋排放的有机碳约 0.4 Pg,其 中约 60% 为溶解有机碳 (dissolved organic carbon, DOC), 40% 是颗粒有机碳(particulate organic carbon, POC)[3],通过河流陆地生态系统向海洋排 放的有机碳大致相当于全球陆地生态系统净初级生 产力的1%~2%[4].溶解有机碳根据生物可利用 性分为三类:容易被降解的活性 DOC(labile DOC. LDOC)、可被缓慢降解的半活性 DOC(semi-labile DOC, SLDOC), 以及难以被生物降解的惰性 DOC (recalcitrant DOC, RDOC)<sup>[5]</sup>.

岩溶地质作用的碳汇一度被质疑<sup>[6]</sup>,是源于传统的碳循环模型中把地质作用当作一种纯无机过程<sup>[7]</sup>,然而,近来的研究表明,岩溶作用并非纯无机地质过程,生物广泛参与岩溶作用,当水生系统的光合作用强度超过呼吸作用强度时,碳酸钙沉降过程将无机碳转化成有机碳<sup>[8~12]</sup>,进一步沉积和埋藏;同时海洋研究中发现,AAPB (aerobic anoxygenic phototrophic bacteria)作用下形成 RDOC,使碳酸盐岩的风化也能形成长久的碳汇(千年尺度)<sup>[13,14]</sup>,通过河流陆地生态系统向海洋排放的有机碳约0.1Pg的 DOC 循环周期可达到4~6千年<sup>[15]</sup>.

河流有机碳来源主要包括内源有机碳(水生植物光合作用产物)和外源有机碳(地表径流的侵蚀冲刷而进入河流的产物).碳同位素示踪、水中有机质 C/N 及生物标记法是国内外常用的研究方法,能很好地解决河流有机碳的来源问题. Waterson等 [16]利用 C/N 和 $\delta^{13}C_{Toc}$ 揭示了美国密西西比河水的总有机碳中 50%是内源有机碳,唐文魁等 [2]利用  $\delta^{13}C_{poc}$ 研究发现桂江流域水生光合产物对颗粒有机碳的贡献达 25. 1%,陶贞等 [17] 利用 C/N 研究发现增江流域河水悬移质中的有机碳以水生藻类 (内源碳)的贡献为主(超过 70%),Sun 等 [18] 利用 C/N 和  $\delta^{13}C_{DIC}$ 、 $\delta^{13}C_{poc}$ 研究发现,我国西江流域雨季和旱季时河水中 3% ~ 21% 和 12% ~ 22% 的 POC 是河流

水生系统的光合作用利用碳酸岩盐风化产物 DIC 而形成的. 原雅琼<sup>[19]</sup>利用 C/N、8<sup>13</sup>C<sub>Poc</sub>分析发现漓江水体在非洪水过程时,河流有机碳主要来源于水生植物,内源有机碳的比例可达 92%,且在内源有机碳中来自植物光合利用 HCO<sub>3</sub> 生成的有机碳的比例达 46% ~77%. 原雅琼利用的 C/N 值与其他数据不是同一时间段,同时采样密度不够多,DOC与 POC 中内源有机碳的含量及比例也未做研究,因此,剖析水生光合生物对不同形式碳的作用和影响,有助于对漓江流域碳循环的认识.

本文以珠江支流桂江的上游河段漓江为研究对象,采用同位素示踪法及相关分析法,利用稳定同位素、C/N、端元混合模型来辨析漓江流域 DOC、POC 来源端元及贡献,分析水生光合生物对流域有机碳的影响,以期为岩溶碳汇稳定性科学问题的解答提供基础.

### 1 材料与方法

### 1.1 研究区概况

漓江流域位于广西壮族自治区的东北部,属珠 江水系的桂江上游段. 发源于越城岭老山界南侧, 由北向南经兴安、桂林、阳朔,桂林断面以上河段 主要为花岗岩、碎屑岩非岩溶区,桂林到阳朔河段 主要为覆盖型及裸露型岩溶区. 地理坐标为 E109°45′~111°02′,N24°16′~26°21′,全长164 km, 流域总面积12 680 km²,整个漓江流域以漓江为轴 线,呈南北向狭长带状分布(图1),属于中亚热带季 风气候区,年平均气温为 16.5~20.0℃,雨量充沛, 年平均降雨量为1367.5~1932.9 mm, 雨热同期. 漓江为雨源型河流,河道径流由流域降雨补给,汛期 为每年的4~8月,其降雨量占全年降雨量的70% 左右,枯季(11月至翌年2月)降雨稀少[20]. 漓江的 地表径流来源于流域内的地表水和地下水,在雨季 发洪水时地表水向地下渗透,低水期和枯水期地下 水补给河槽[20]. 因流域内碳酸盐岩质纯层厚,加之 雨热同期的季风气候条件,岩溶发育强烈,碳酸盐岩 峰丛、峰林地貌广布,漓江贯穿于两者之间,形成流 域区独特的自然景观.

### 1.2 样品的采集与前处理

在漓江兴安—阳朔段,上游(兴安段)、中游 (桂林段)和下游(阳朔段)主要断面及支流汇入处 布置了13个采样点(图1),分别为漓江上游华江



图 1 研究区水文地质图与采样点位置<sup>19]</sup>
Fig. 1 Hydrogeological map of the study area and the locations of the sampling sites

(L1)、峡背(L2:灵渠与大溶江汇合后)、灵川(L3: 漓江支流甘棠江)、大面圩(L4:甘棠江水汇入漓江后)、漓江干流桂林水文站(L5)、父子岩(L6 干流良丰河水汇入漓江后)、漓江支流良丰河(L7)、潮田河水文站(L8:漓江支流潮田河)、省里(L9:干流潮田河水汇入漓江后)、下游干流杨堤(L10)、遇龙河(L11)、遇龙河支流(L12)、阳朔水文站(L13).于 2016 年 7 月 27 日、8 月 27 日、9 月 12 日采集POC、DOC、 $\delta^{13}$ C<sub>POC</sub>、C/N 水样,为避免采样过程中发生污染,采样前先用待采水样洗涤采样瓶 3~5次.现场利用便携式水质分析仪(法国 PONSEL)测定水样 pH、水温(T) 和溶解氧(DO),见表 1,其精度分别为 0. 01 pH 单位,0. 01  $^{\circ}$  0. 01 mg·L $^{-1}$ ;用德国 Merck 公司生产的碱度计现场滴定 HCO $^{\circ}$  、精度为 0. 1 mmol·L $^{-1}$ .

### 1.3 样品分析

DOC 含量分析使用德国耶拿公司(Analytik Jena AG) 生产的 Multi C/N 3100 测定,精度为

0.001 mg·L<sup>-1</sup>. POC 和<sup>13</sup>C<sub>POC</sub>的采样及测定:用于过滤水样的玻璃纤维膜预先在马弗炉 450℃灼烧 6 h 以去除无机碳. 用玻璃抽滤器加 47 mm GF/F 滤膜 (孔径 0.7  $\mu$ m) 过滤,并送国家海洋局第三海洋研究所测试中心测试,分析精度为 ± 0.2‰,测试流程如下:用不锈钢打孔器取固定面积酸熏后的玻璃纤维膜样,用 5 × 9 锡杯包样,用 Thermo 公司生产的元素分析仪-稳定同位素质谱仪联机 (Flash EA 1112 HT-Delta V Advantages)测定膜样中 POC、<sup>13</sup>C<sub>POC</sub>值.载气 He 流速 90 mL·min <sup>-1</sup>,反应管温度 960℃,色谱柱温度 50℃.

δ<sup>13</sup>C<sub>POC</sub> 值以 PDB 国际标准作为参考标准, δ<sup>13</sup>C<sub>POC</sub> 值按以下公式计算:

$$\delta^{13}C(\%) = \left[\frac{R(^{13}C/^{12}C_{\text{sample}})}{R(^{13}C/^{12}C_{\text{VPDB}})} - 1\right] \times 1000 (1)$$

式中,  $R(^{13}C/^{12}C_{VPDB})$  为国际标准物 VPDB(vienna peedee belemnite)的碳同位素丰度比值.

### 2 结果与讨论

### 2.1 溶解无机碳与有机碳浓度变化特征

本研究测得漓江流域 DIC 浓度介于 24.4~183.0 mg·L<sup>-1</sup>,平均为 91.66 mg·L<sup>-1</sup>. DOC 浓度介于 1.14~5.66 mg·L<sup>-1</sup>,平均为 3.15 mg·L<sup>-1</sup>,低于全球 DOC 浓度平均值(5.29 mg·L<sup>-1</sup>)<sup>[21]</sup>. POC 浓度介于 0.19~0.8 mg·L<sup>-1</sup>,平均为 0.33 mg·L<sup>-1</sup>.

漓江流域 DIC 浓度空间分布特征为:岩溶区 (L7、L11)>岩溶区与非岩溶区的混合区(L3、L4、 L5、L6、L9、L8、L10、L13) > 非岩溶区(L1、L2、 L12),混合区干流 DIC 浓度从上游到下游递增,支 流 DIC 浓度在干流 DIC 浓度的上下摆动(图 2),主 要受控于流域碳酸盐岩的空间分布比例,DIC 质量 浓度与碳酸盐岩的空间分布比例呈显著正相关关系  $(R^2 = 0.80)$ , DIC 质量浓度随着碳酸盐岩的分布比 例增加而相应增大(图3). POC 含量上下游差异不 大(图2). 漓江水体 DOC 浓度空间分布特征为:岩 溶区(3.50 mg·L<sup>-1</sup>)高于非岩溶区(1.80 mg·L<sup>-1</sup>); 上游(1.91 mg·L<sup>-1</sup>) 低于下游(3.58 mg·L<sup>-1</sup>)(图 2). 其原因可能为非岩溶区水进入岩溶区后,水生 植物增加,水生植物利用 HCO; 进行光合作用,从 而导致水体中 DOC 浓度岩溶区大于非岩溶区. DO 也表现为岩溶区大于非岩溶区,主要是岩溶区水生 植物光合作用的原因. 一般情况下,小河流或大河 的上游水流湍急,不利于水生植物的生长;在大河

表 1 漓江地表水体部分测试数据

| Table 1 | Part of | the | testing | data | of t | he Li | iiang | surface | water |
|---------|---------|-----|---------|------|------|-------|-------|---------|-------|
|         |         |     |         |      |      |       |       |         |       |

| 日型   (4年月)   水秤車                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·       |        |       | Table 1 Part | of the testing of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lata of the Lijia | ang surface wate | er     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 采样点    | рН    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        | C/N    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | L1     | 7. 41 | 27, 55       | 7. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                  | 0. 24  | 9. 34  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2016-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2016-07 |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        | 10.7   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2016-08         1.7         7.55         27.85         9.28         164.7         5.51         0.51         10.90         -23.63           18         8.19         24.21         8.79         128.1         2.18         0.29         12.33         -23.85           19         9         27.76         6.63         67.1         3.34         0.38         10.89         -23.33           1.10         8.79         28.09         8.82         85.4         3.27         0.27         10.38         -24.35           1.11         8.16         26.54         7.89         176.9         3.04         0.32         12.83         -24.62           1.12         7.86         26.31         8.59         36.6         2.43         0.28         11.56         -25.09           1.13         8.21         27.4         9         152.5         3.37         0.29         11.04         -24.50           1.1         8.36         24.24         8.93         30.5         1.45         0.37         12.78         -24.22           1.2         7.5         24.57         7.68         48.8         2.02         0.27         9.55         -25.83           1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |        |       |              | Action of the Contract of the  |                   |                  |        | 740    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18       8.19       24.21       8.79       128.1       2.18       0.29       12.33       -23.85         19       9       27.76       6.63       67.1       3.34       0.38       10.89       -23.33         L10       8.79       28.09       8.82       85.4       3.27       0.27       10.38       -24.35         L11       8.16       26.54       7.89       176.9       3.04       0.32       12.83       -24.62         L12       7.86       26.31       8.59       36.6       2.43       0.28       11.56       -25.09         L13       8.21       27.4       9       152.5       3.37       0.29       11.04       -24.50         L1       8.36       24.24       8.93       30.5       1.45       0.37       12.78       -24.22         12       7.5       24.57       7.68       48.8       2.02       0.27       9.55       -25.83         13       7.62       24.79       8.75       79.3       3.36       0.32       10.20       -24.58         14       7.38       25.66       8.73       54.9       2.41       0.19       10.05       -24.57         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2016-08 |        |       |              | 1 /200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 1 1              |        |        | 1 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        | /      | 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| L10 8.79 28.09 8.82 85.4 3,27 0.27 10.38 -24.35  L11 8.16 26.54 7.89 176.9 3.04 0.32 12.83 -24.62  L12 7.86 26.31 8.59 36.6 2.43 0.28 11.56 -25.09  L13 8.21 27.4 9 152.5 3.37 0.29 11.04 -24.50  L1 8.36 24.24 8.93 30.5 1.45 0.37 12.78 -24.22  L2 7.5 24.57 7.68 48.8 2.02 0.27 9.55 -25.83  L3 7.62 24.79 8.75 79.3 3.36 0.32 10.20 -24.58  L4 7.38 25.66 8.73 54.9 2.41 0.19 10.05 -24.57  L5 8.53 26.32 12.5 54.9 5.66 0.48 8.88 -23.78  L6 7.84 25.94 2.98 109.8 3.92 0.30 9.58 -24.12  2016-09 17 8.76 25.8 14.18 164.7 5.63 0.67 10.93 -23.87  L8 8.3 25.5 7.52 97.6 4.51 0.29 9.64 -24.21  L9 8.43 25.4 7.21 103.7 2.97 0.23 13.41 -24.44  L10 7.7 27 7.24 152.5 4.24 0.22 11.07 -24.99  L11 8.36 27.05 7.97 164.7 3.78 0.20 12.77 -25.14  L12 7.84 27.85 7.85 61 3.70 0.24 9.85 -24.90  L13 8.28 27.28 12.74 152.5 5.21 0.31 10.63 -23.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        |       | 1. 1         | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                  |        | 1      | 1/1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| L11       8. 16       26. 54       7. 89       176. 9       3. 04       0. 32       12. 83       -24. 62         L12       7. 86       26. 31       8. 59       36. 6       2. 43       0. 28       11. 56       -25. 09         L13       8. 21       27. 4       9       152. 5       3. 37       0. 29       11. 04       -24. 50         L1       8. 36       24. 24       8. 93       30. 5       1. 45       0. 37       12. 78       -24. 22         12       7. 5       24. 57       7. 68       48. 8       2. 02       0. 27       9. 55       -25. 83         13       7. 62       24. 79       8. 75       79. 3       3. 36       0. 32       10. 20       -24. 58         14       7. 38       25. 66       8. 73       54. 9       2. 41       0. 19       10. 05       -24. 57         15       8. 53       26. 32       12. 5       54. 9       5. 66       0. 48       8. 88       -23. 78         16       7. 84       25. 94       2. 98       109. 8       3. 92       0. 30       9. 58       -24. 12         2016-09       1.7       8. 76       25. 8       14. 18       164. 7       5. 63 <td></td> <td></td> <td></td> <td></td> <td>1 9 /</td> <td></td> <td>1 4</td> <td>- A</td> <td></td> <td>to the same of the</td> |         |        |       |              | 1 9 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 1 4              | - A    |        | to the same of the |
| L12 7. 86 26. 31 8. 59 36. 6 2. 43 0. 28 11. 56 -25. 09 L13 8. 21 27. 4 9 152. 5 3. 37 0. 29 11. 04 -24. 50  L1 8. 36 24. 24 8. 93 30. 5 1. 45 0. 37 12. 78 -24. 22 L2 7. 5 24. 57 7. 68 48. 8 2. 02 0. 27 9. 55 -25. 83 L3 7. 62 24. 79 8. 75 79. 3 3. 36 0. 32 10. 20 -24. 58 L4 7. 38 25. 66 8. 73 54. 9 2. 41 0. 19 10. 05 -24. 57 L5 8. 53 26. 32 12. 5 54. 9 5. 66 0. 48 8. 88 -23. 78 L6 7. 84 25. 94 2. 98 109. 8 3. 92 0. 30 9. 58 -24. 12  2016-09 17 8. 76 25. 8 14. 18 164. 7 5. 63 0. 67 10. 93 -23. 87 L8 8. 3 25. 5 7. 52 97. 6 4. 51 0. 29 9. 64 -24. 21 L9 8. 43 25. 4 7. 21 103. 7 2. 97 0. 23 13. 41 -24. 44 L10 7. 7 27 7. 24 152. 5 4. 24 0. 22 11. 07 -24. 99 L11 8. 36 27. 05 7. 97 164. 7 3. 78 0. 20 12. 77 -25. 14 L12 7. 84 27. 85 7. 85 61 3. 70 0. 24 9. 85 -24. 90 L13 8. 28 27. 28 12. 74 152. 5 5. 21 0. 31 10. 63 -23. 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1      | / 18   |       | 1 6 /4       | I TOY DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 1 10 1           | 5      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L13       8. 21       27. 4       9       152. 5       3. 37       0. 29       11. 04       - 24. 50         L1       8. 36       24. 24       8. 93       30. 5       1. 45       0. 37       12. 78       - 24. 22         L2       7. 5       24. 57       7. 68       48. 8       2. 02       0. 27       9. 55       - 25. 83         L3       7. 62       24. 79       8. 75       79. 3       3. 36       0. 32       10. 20       - 24. 58         L4       7. 38       25. 66       8. 73       54. 9       2. 41       0. 19       10. 05       - 24. 57         L5       8. 53       26. 32       12. 5       54. 9       5. 66       0. 48       8. 88       - 23. 78         L6       7. 84       25. 94       2. 98       109. 8       3. 92       0. 30       9. 58       - 24. 12         2016-09       L7       8. 76       25. 8       14. 18       164. 7       5. 63       0. 67       10. 93       - 23. 87         L8       8. 3       25. 5       7. 52       97. 6       4. 51       0. 29       9. 64       - 24. 21         L9       8. 43       25. 4       7. 21       103. 7       2. 97 </td <td>6</td> <td>- 69 B</td> <td></td> <td>W. 10 /</td> <td>11 11</td> <td></td> <td>1 1</td> <td>1.0</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6       | - 69 B |       | W. 10 /      | 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 1 1              | 1.0    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12       7.5       24.57       7.68       48.8       2.02       0.27       9.55       -25.83         13       7.62       24.79       8.75       79.3       3.36       0.32       10.20       -24.58         14       7.38       25.66       8.73       54.9       2.41       0.19       10.05       -24.57         15       8.53       26.32       12.5       54.9       5.66       0.48       8.88       -23.78         16       7.84       25.94       2.98       109.8       3.92       0.30       9.58       -24.12         2016-09       1.7       8.76       25.8       14.18       164.7       5.63       0.67       10.93       -23.87         18       8.3       25.5       7.52       97.6       4.51       0.29       9.64       -24.21         19       8.43       25.4       7.21       103.7       2.97       0.23       13.41       -24.44         L10       7.7       27       7.24       152.5       4.24       0.22       11.07       -24.99         L11       8.36       27.05       7.97       164.7       3.78       0.20       12.77       -25.14      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7       | L13    |       |              | EV de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 1 - 1            | M. 1-1 | 1.0    | - 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12       7.5       24.57       7.68       48.8       2.02       0.27       9.55       -25.83         13       7.62       24.79       8.75       79.3       3.36       0.32       10.20       -24.58         14       7.38       25.66       8.73       54.9       2.41       0.19       10.05       -24.57         15       8.53       26.32       12.5       54.9       5.66       0.48       8.88       -23.78         16       7.84       25.94       2.98       109.8       3.92       0.30       9.58       -24.12         2016-09       1.7       8.76       25.8       14.18       164.7       5.63       0.67       10.93       -23.87         18       8.3       25.5       7.52       97.6       4.51       0.29       9.64       -24.21         19       8.43       25.4       7.21       103.7       2.97       0.23       13.41       -24.44         L10       7.7       27       7.24       152.5       4.24       0.22       11.07       -24.99         L11       8.36       27.05       7.97       164.7       3.78       0.20       12.77       -25.14      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | (Cul-  | 8. 36 | 24, 24       | 8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30. 5             | 1.45             | 0. 37  | 12. 78 | - 24, 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13       7.62       24.79       8.75       79.3       3.36       0.32       10.20       -24.58         14       7.38       25.66       8.73       54.9       2.41       0.19       10.05       -24.57         15       8.53       26.32       12.5       54.9       5.66       0.48       8.88       -23.78         16       7.84       25.94       2.98       109.8       3.92       0.30       9.58       -24.12         2016-09       17       8.76       25.8       14.18       164.7       5.63       0.67       10.93       -23.87         18       8.3       25.5       7.52       97.6       4.51       0.29       9.64       -24.21         19       8.43       25.4       7.21       103.7       2.97       0.23       13.41       -24.44         10       7.7       27       7.24       152.5       4.24       0.22       11.07       -24.99         11       8.36       27.05       7.97       164.7       3.78       0.20       12.77       -25.14         112       7.84       27.85       7.85       61       3.70       0.24       9.85       -24.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F \$10  | L2=    |       | 1 12 11      | 1 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100               | 1.00             |        |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| L4       7. 38       25, 66       8. 73       54. 9       2. 41       0. 19       10. 05       -24. 57         L5       8. 53       26. 32       12. 5       54. 9       5. 66       0. 48       8. 88       -23. 78         L6       7. 84       25. 94       2. 98       109. 8       3. 92       0. 30       9. 58       -24. 12         2016-09       L7       8. 76       25. 8       14. 18       164. 7       5. 63       0. 67       10. 93       -23. 87         L8       8. 3       25. 5       7. 52       97. 6       4. 51       0. 29       9. 64       -24. 21         L9       8. 43       25. 4       7. 21       103. 7       2. 97       0. 23       13. 41       -24. 44         L10       7. 7       27       7. 24       152. 5       4. 24       0. 22       11. 07       -24. 99         L11       8. 36       27. 05       7. 97       164. 7       3. 78       0. 20       12. 77       -25. 14         L12       7. 84       27. 85       7. 85       61       3. 70       0. 24       9. 85       -24. 90         L13       8. 28       27. 28       12. 74       152. 5       5. 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RV      |        |       | 4 4          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L5       8.53       26.32       12.5       54.9       5.66       0.48       8.88       -23.78         L6       7.84       25.94       2.98       109.8       3.92       0.30       9.58       -24.12         2016-09       L7       8.76       25.8       14.18       164.7       5.63       0.67       10.93       -23.87         L8       8.3       25.5       7.52       97.6       4.51       0.29       9.64       -24.21         L9       8.43       25.4       7.21       103.7       2.97       0.23       13.41       -24.44         L10       7.7       27       7.24       152.5       4.24       0.22       11.07       -24.99         L11       8.36       27.05       7.97       164.7       3.78       0.20       12.77       -25.14         L12       7.84       27.85       7.85       61       3.70       0.24       9.85       -24.90         L13       8.28       27.28       12.74       152.5       5.21       0.31       10.63       -23.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2     | # L4 # |       |              | 0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L6       7.84       25.94       2.98       109.8       3.92       0.30       9.58       -24.12         2016-09       L7       8.76       25.8       14.18       164.7       5.63       0.67       10.93       -23.87         L8       8.3       25.5       7.52       97.6       4.51       0.29       9.64       -24.21         L9       8.43       25.4       7.21       103.7       2.97       0.23       13.41       -24.44         L10       7.7       27       7.24       152.5       4.24       0.22       11.07       -24.99         L11       8.36       27.05       7.97       164.7       3.78       0.20       12.77       -25.14         L12       7.84       27.85       7.85       61       3.70       0.24       9.85       -24.90         L13       8.28       27.28       12.74       152.5       5.21       0.31       10.63       -23.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0)     | L5     |       |              | The same of the sa |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2016-09       L7       8.76       25.8       14.18       164.7       5.63       0.67       10.93       -23.87         18       8.3       25.5       7.52       97.6       4.51       0.29       9.64       -24.21         19       8.43       25.4       7.21       103.7       2.97       0.23       13.41       -24.44         L10       7.7       27       7.24       152.5       4.24       0.22       11.07       -24.99         L11       8.36       27.05       7.97       164.7       3.78       0.20       12.77       -25.14         L12       7.84       27.85       7.85       61       3.70       0.24       9.85       -24.90         L13       8.28       27.28       12.74       152.5       5.21       0.31       10.63       -23.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1       |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L8       8.3       25.5       7.52       97.6       4.51       0.29       9.64       -24.21         L9       8.43       25.4       7.21       103.7       2.97       0.23       13.41       -24.44         L10       7.7       27       7.24       152.5       4.24       0.22       11.07       -24.99         L11       8.36       27.05       7.97       164.7       3.78       0.20       12.77       -25.14         L12       7.84       27.85       7.85       61       3.70       0.24       9.85       -24.90         L13       8.28       27.28       12.74       152.5       5.21       0.31       10.63       -23.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2016-09 |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19     8. 43     25. 4     7. 21     103. 7     2. 97     0. 23     13. 41     - 24. 44       L10     7. 7     27     7. 24     152. 5     4. 24     0. 22     11. 07     - 24. 99       L11     8. 36     27. 05     7. 97     164. 7     3. 78     0. 20     12. 77     - 25. 14       L12     7. 84     27. 85     7. 85     61     3. 70     0. 24     9. 85     - 24. 90       L13     8. 28     27. 28     12. 74     152. 5     5. 21     0. 31     10. 63     - 23. 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L10 7.7 27 7.24 152.5 4.24 0.22 11.07 -24.99 L11 8.36 27.05 7.97 164.7 3.78 0.20 12.77 -25.14 L12 7.84 27.85 7.85 61 3.70 0.24 9.85 -24.90 L13 8.28 27.28 12.74 152.5 5.21 0.31 10.63 -23.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L11 8. 36 27. 05 7. 97 164. 7 3. 78 0. 20 12. 77 -25. 14 L12 7. 84 27. 85 7. 85 61 3. 70 0. 24 9. 85 -24. 90 L13 8. 28 27. 28 12. 74 152. 5 5. 21 0. 31 10. 63 -23. 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L12 7. 84 27. 85 7. 85 61 3. 70 0. 24 9. 85 -24. 90<br>L13 8. 28 27. 28 12. 74 152. 5 5. 21 0. 31 10. 63 -23. 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |       | 27. 05       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L13 8. 28 27. 28 12. 74 152. 5 5. 21 0. 31 10. 63 -23. 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

的下游或河口区,水流较慢,营养物质丰富,有利于河流浮游生物的生长,因而下游较上游有较高的水生生物初级生产力<sup>[22]</sup>.

漓江流域 DOC 浓度与 DIC 质量浓度存在正相 关关系(图 4),说明 DOC 来源除了外源,还存在 DIC 向 DOC 的转化; DOC 浓度与 DO 存在正相关关 系(图 4),说明 DOC 和 DO 有共同的来源(水生生 物光合作用). 综上,说明漓江岩溶地表水生系统中 水生植物的光合作用可以利用 DIC 产生 DOC,其过 程表示如下:

$$Ca^{2+} + 2HCO_3^- + 4.7CO_2 + NO_3^- + H^+ + 3.4H_2O \Longrightarrow CaCO_3 \downarrow + C_{5.7}H_{9.8}O_{2.3}N + 8.25O_2 \uparrow$$
 (2)

漓江水体 POC 浓度与 DO 呈正相关关系(图5),说明 POC 来源除了外源,还可能来源于水生生物的初级生产力; POC 浓度与 DOC 存在正相关关系(图5),说明漓江岩溶地表水生系统可能存在 DOC 与 POC 之间的转化.



Fig. 2 Variations in content of DIC, DOC, and POC in the Lijiang basin



图 3 DIC 与碳酸盐岩分布比例相关关系 Fig. 3 Correlation between DIC and distribution

Fig. 3 Correlation between DIC and distribution proportion of carbonate rocks

### **2.2** 模型 1: <sup>13</sup>C<sub>POC</sub> 计算 POC 来源

漓江流域 $^{13}$ C<sub>POC</sub>值介于 - 26. 78‰ ~ -23. 33‰, 平均为 -24. 56‰,上下游差异不明显. 河流输送的 颗粒有机碳可以看作水生生物的生物量(內源碳) 与外源土壤颗粒有机碳的端元混合. 考虑内源、外源端元组分的 $^{12}$ C<sub>POC</sub>,可以定量估算河水 POC 中内源碳与外源碳的比例,其同位素质量平衡方程如下:

$$\delta^{13}C_{POC} = f_{au/POC} \cdot \delta_{au} + f_{al/POC} \cdot \delta_{al}$$

$$f_{au/POC} + f_{al/POC} = 1$$
(4)

式中, $^{13}$ C<sub>POC</sub>为样品的碳同位素值; $\delta_{au}$ 、 $\delta_{al}$ 分别为内源碳与外源碳端元组分的碳同位素值; $f_{au/POC}$ 、 $f_{al/POC}$ 分别表示 POC 中内源碳与外源碳所占的比例.

两个端元的确定如下: 其中  $\delta_{al}$  可以参照 Sun 等 [18] 关于西江 2005 年 [18] CPOC 的数据, 6 月西江发生 罕见洪水, 期间 [18] CPOC 介于 -23.8% ~ -22.2%, 平均为 -23.0%, 河流初级生产对 POC 的贡献可以忽略不计, POC 几乎全部来自于陆源侵蚀, 此时的 [18] CPOC 可以作为  $\delta_{al}$  的典型值, 为 -23.0%;  $\delta_{au}$ 则选择 Sun 在西江下游水生生物量的 [18] CPOC 几,为 -32%.

结合 POC 浓度值,可计算出漓江流域颗粒有机



图 4 DOC 与 DIC 及 DOC 与 DO 的相关关系

Fig. 4 Correlation between DOC and DIC, DOC, and DO



Fig. 5 Correlation between POC and DO, POC, and DOC

碳中内源有机碳浓度,方程如下:

$$POC_{au} = POC \cdot f_{au/POC} \tag{5}$$

式中,POC 为样品的 POC 浓度值;  $f_{\text{au/POC}}$ 为 POC 中内 源碳所占比例; POC ... 为 POC 中内源有机碳的浓度.

计算结果表明水生生物量对漓江流域 POC 贡 献率范围为 3.69% ~41.94%, 平均为 17.31%. 低 于桂江水体水生生物量对 POC 的贡献 7 月平均值 (25.1%)<sup>[2]</sup>; POC 中内源有机碳浓度(POC<sub>au</sub>)介于 0.01~0.16 mg·L<sup>-1</sup>,平均为0.05 mg·L<sup>-1</sup>(图6、图 7). 总体而言, 漓江流域 POC 以外源有机碳为主, 上下游差异不大. 即漓江水体中83%的POC来源 于陆生生物,由水生生物转化过来的 POC 占的比例 为 17%.

### 2.3 模型 2:C/N 计算 TOC 来源

本研究测得漓江流域 C/N 值介于 8.57~13.41

之间,平均为10.40. 已有研究表明外源有机碳 C/N 值大于15[23];根据典型藻类光合作用形成产物为 C<sub>5,7</sub> H<sub>9,8</sub> O<sub>2,3</sub> N, 其 C/N 应 为 6 左 右, 真 菌 (C<sub>10</sub>H<sub>17</sub>O<sub>6</sub>N)的 C/N 为 10,细菌(C<sub>5</sub>H<sub>7</sub>O<sub>5</sub>N)的 C/N 为5,因此,内源有机质的 C/N 介于5~10 之间. 以 C/N 值 6.6 为内源端元<sup>[24,25]</sup>, 20.69 为外源端 元[26],可以利用端元混合模型计算内源有机碳占总 有机碳的比例,方程如下:

$$C/N = f_{au} \cdot f_B + f_{al} \cdot (1 - f_B)$$
 (6)  
式中  $C/N$  为样品的  $C/N$  值;  $f_{au}$  为  $C/N$  值的内源端元,取  $6.6$ ;  $f_{al}$  为  $C/N$  值的外源端元,取  $20.69$ ;  $f_B$  为内源有机碳在总有机碳中的比例.

结合漓江流域 TOC(POC + DOC) 浓度值,可计 算出总有机碳中内源碳的浓度(TOC<sub>m</sub>),方程如下:

$$TOC_{au} = TOC \cdot f_{B} \tag{7}$$



图 6 漓江流域 TOC、DOC、POC 中内源碳的含量

Fig. 6 Content of autochthonous organic carbon in the TOC, DOC, and POC of the Lijiang basin



图 7 漓江流域 TOC、DOC、POC 中内源碳的比例

Fig. 7 Proportion of allochthonous organic carbon in the TOC, DOC, and POC of the Lijiang basin

式中,TOC 为样品的总有机碳含量值;  $f_B$  为内源有机碳在总有机碳中的比例;  $TOC_{au}$  为总有机碳中内源碳的浓度.

计算表明内源有机碳占总有机碳的比例( $f_B$ )介于 51. 68% ~ 85. 99%, 平均为 73. 07%; 总有机碳中内源碳的含量介于 0. 97 ~ 5. 10  $\mathrm{mg} \cdot \mathrm{L}^{-1}$ , 平均为 2. 48  $\mathrm{mg} \cdot \mathrm{L}^{-1}$ (图 6、图 7). 即漓江水体中 27%的 TOC 来源于陆源,73%的 TOC 来源于水生植物光合作用产物.

### 2.4 DOC、TOC、POC 内外源比例及含量分析

结合总有机碳中内源碳的浓度、颗粒有机碳中内源碳的浓度、溶解有机碳浓度,可以计算出 DOC中内源碳的浓度( $DOC_{au}$ )及 DOC 中内源碳所占比例( $f_{au/DOC}$ ). 计算公式如下:

$$DOC_{au} = TOC_{au} - POC_{au}$$
 (8)

$$f_{\text{au/DOC}} = \text{DOC}_{\text{au}}/\text{DOC}$$
 (9)

式中, $DOC_{au}$ 为 DOC 中内源碳的浓度; $TOC_{au}$ 为总有机碳中内源碳的浓度; $POC_{au}$ 为 POC 中内源碳的浓度;DOC 为样品的溶解有机碳浓度; $f_{au/DOC}$ 为 DOC 中内源碳所占比例.

计算结果表明漓江水体 DOC 中内源碳所占比例( $f_{\text{au/DOC}}$ )介 于 54.43% ~ 94.69%,平均为79.51%;DOC 中内源碳的浓度介于 0.97 ~ 5.10  $\text{mg} \cdot \text{L}^{-1}$ ,平均为 2.48  $\text{mg} \cdot \text{L}^{-1}$ . 即漓江水体中 20%的 DOC 是地表径流的侵蚀冲刷而进入河流的产物,80%的 DOC 来源于水生生物的初级生产力.

漓江水体内源 DOC 占内源 TOC 的比例介于92.83%~99.46%,平均为97.58%,空间分布无明显差异; DOC 占 TOC 的比例平均为89.83%(DOC 是构成有机碳的主体),空间分布表现为岩溶区、混



(A)2016-07, (B) 2016-08, (C)2016-09

a 表示岩溶区, b 表示岩溶区与非岩溶区的混合区(b1 表示干流区,b2 表示支流区),c 表示非岩溶区

### 图 8 DOC、POC 占 TOC 比例

Fig. 8 Proportion of DOC and POC in the TOC

合区 > 非岩溶区(图 8). DOC 浓度空间分布特征为:岩溶区 > 混合区 > 非岩溶区, POC 浓度空间分布差异不大(图 2). 内源 TOC、DOC 浓度空间分布特征为:岩溶区 > 混合区 > 非岩溶区, 内源 POC 浓度空间分布特征为:岩溶区 > 混合区 > 非岩溶区, 内源 POC 浓度空间分布差异不大(图 6),可能与岩溶区水生植物丰茂、碳酸酐酶(carbonic anhydrase, CA)活性较强有关(CA 活性与 HCO<sub>3</sub><sup>-</sup> 浓度呈正相关)<sup>[27]</sup>; 漓江水体 TOC、DOC、POC 中内源碳的比例空间分布差异不大(图 7); TOC 来源以内源碳为主(内源碳的比例为 73%), 而 POC 主要来源于陆生生物(内源碳的比例为 17%), DOC 主要来源于水生生物的初级生产力(内源碳的比例为 80%).

综上所述漓江流域 TOC、DOC 以内源碳为主, POC 中水生生物量也占一定比例.

内源有机碳中有多少比例是水生生物利用 HCO<sub>3</sub>生成的、内源有机碳的稳定性及 DOC 与 POC 之间的转化本文都未做研究,以后可以展开这 方面的研究.

### 3 结论

- (1)漓江流域 DIC 浓度空间分布特征为:岩溶区(良丰河、遗龙河)>岩溶区与非岩溶区的混合区(灵川、大面圩、桂林水文站、父子岩、潮田河水文站、省里、杨堤、阳朔水文站)>非岩溶区(华江、峡背、遇龙河支流);混合区干流 DIC 含量从上游到下游递增.主要受控于流域碳酸盐岩的空间分布比例,DIC 质量浓度与碳酸盐岩的空间分布比例是显著正相关关系(R²=0.80,P<0.01).
- (2) 漓江水体 DOC 浓度与 DIC 质量浓度、DOC 浓度与 DO 均存在正相关关系,说明岩溶地表水生系统中水生植物的光合作用可以利用 DIC 而形成 DOC; POC 浓度与 DO 呈正相关关系,说明 POC 来源除了外源,还可能来源于水生生物的初级生产力; POC 浓度与 DOC 存在正相关关系,岩溶地表水生系统存在 DOC 与 POC 转化.
- (3) POC 浓度、POC 中内源碳的浓度及 POC 中内源碳的比例空间分布差异不大,POC 来源以外源碳为主,POC 中内源有机碳浓度介于  $0.01 \sim 0.16$  mg·L<sup>-1</sup>,平均为 0.05 mg·L<sup>-1</sup>,水生生物量对漓江流域 POC 贡献介于  $3.69\% \sim 41.94\%$ ,平均为 17.31%,即 83%的 POC 来源于陆生生物,由水生生物转化过来的 POC 占的比例为 17%.
- (4) DOC 是构成漓江水体 TOC 的主体, TOC 来源以内源有机碳为主, 内源碳的浓度空间分布特征

为:岩溶区 > 混合区 > 非岩溶区,可能与岩溶区水生植物丰茂、碳酸酐酶活性较强有关,TOC 中内源碳的浓度介于  $1.02 \sim 5.14 \text{ mg·L}^{-1}$ , 平均为  $2.54 \text{ mg·L}^{-1}$ ; TOC 中内源碳的比例空间分布差异不大,介于  $51.68\% \sim 85.99\%$ ,平均为 73.07%,即 27%的 TOC 来源于陆源,73%的 TOC 来源于水生植物光合作用产物.

(5) DOC 浓度、内源 DOC 浓度空间分布均为岩溶区 > 混合区 > 非岩溶区, DOC 主要来源于水生生物的初级生产力, DOC 中内源碳的浓度介于  $0.97 \sim 5.10 \text{ mg} \cdot \text{L}^{-1}$ , 平均为  $2.48 \text{ mg} \cdot \text{L}^{-1}$ ; DOC 中内源碳的比例空间分布差异不大, DOC 中内源碳所占比例介于  $54.43\% \sim 94.69\%$ , 平均为 79.51%, 20% 的DOC 是地表径流的侵蚀冲刷而进入河流的产物, 80% 的 DOC 来源于水生生物的初级生产力.

### 参考文献:

- [1] Alvarez-Cobelas M, Angeler D G, Sánchez-Carrillo S, et al. A worldwide view of organic carbon export from catchments [J]. Biogeochemistry, 2012, 107(1-3): 275-293.
- [2] 唐文魁, 陶贞, 高全洲, 等. 桂江主要离子及溶解无机碳的生物地球化学过程[J]. 环境科学, 2014, **35**(6): 2099-2107.
  - Tang W K, Tao Z, Gao Q Z, et al. Biogeochemical processes of the major ions and dissolved inorganic carbon in the Guijiang river [J]. Environmental Science, 2014, 35(6): 2099-2107.
- [ 3 ] Spitzy A, Ittekkot V. Dissolved and particulate organic matter in rivers [ A ]. In: Mantoura R F C, Martin J M, Wollast R (Eds.). Ocean Margin Processes in Global Change [ M ]. Chichester: John Wiley, 1991. 5-17.
- [4] Meybeck M. Carbon, nitrogen, and phosphorus transport by world rivers[J]. American Journal of Science, 1982, 282(4): 401-450.
- [5] 焦念志. 海洋固碳与储碳——并论微型生物在其中的重要作用[J]. 中国科学: 地球科学, 2012, **42**(10): 1473-1486. Jiao N Z. Carbon fixation and sequestration in the ocean, with special reference to the microbial carbon pump[J]. Scientia Sinica Terrae, 2012, **42**(10): 1473-1486.
- [6] Curl R L. Carbon shifted but not sequestered [J]. Science, 2012, 335(6069): 655.
- [7] Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years [J]. American Journal of Science, 1983, 283(7): 641-683.
- [8] Zhang C, Wang J L, Pu J B, et al. Bicarbonate daily variations in a karst river: the carbon sink effect of subaquatic vegetation photosynthesis[J]. Acta Geologica Sinica, 2012, 86(4): 973-979.
- [9] Jiang Y J, Hu Y J, Schirmer M. Biogeochemical controls on daily cycling of hydrochemistry and  $\delta^{13}$ C of dissolved inorganic carbon in a karst spring-fed pool [J]. Journal of Hydrology, 2013, 478: 157-168.
- [10] Tobias C, Böhlke J K. Biological and geochemical controls on

- diel dissolved inorganic carbon cycling in a low-order agricultural stream; implications for reach scales and beyond [J]. Chemical Geology, 2011, **283**(1-2); 18-30.
- [11] de Montety V, Martin J B, Cohen M J, et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river [J]. Chemical Geology, 2011, 283(1-2): 31-43.
- [12] 刘再华,李强,孙海龙,等.云南白水台钙华水池中水化学日变化及其生物控制的发现[J].水文地质工程地质,2005,32(6):10-15.
  - Liu Z H, Li Q, Sun H L, *et al.* Diurnal variations in hydrochemistry in a travertine-depositing stream at Baishuitai, Yunnan, SW China: observations and explanations [J]. Hydrogeology and Engineering Geology, 2005, **32**(6): 10-15.
- [13] Liu Z H, Dreybrodt W, Wang H J. A new direction in effective accounting for the atmospheric CO<sub>2</sub> budget; considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms [J]. Earth-Science Reviews, 2010, 99(3-4); 162-172.
- [14] 焦念志, 张传伦, 李超, 等. 海洋微型生物碳泵储碳机制及气候效应[J]. 中国科学: 地球科学, 2013, 43(1): 1-18. Jiao N Z, Zhang C L, Li C, et al. Controlling mechanisms and climate effects of microbial carbon pump in the ocean [J]. Scientia Sinica Terrae, 2013, 43(1): 1-18.
- [15] Bauer J E, Williams P M, Druffel E R M. <sup>14</sup>C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea[J]. Nature, 1992, 357 (6380); 667-670.
- [16] Waterson E J, Canuel E A. Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and  $\delta^{13}C_{TOG}$  analyses [J]. Organic Geochemistry, 2008, 39(4): 422-439.
- [17] 陶贞, 高全洲, 姚冠荣, 等. 增江流域河流颗粒有机碳的来源、含量变化及输出通量[J]. 环境科学学报, 2004, 24(5): 789-795.
  - Tao Z, Gao Q Z, Yao G R, et al. The sources, seasonal variation and transported fluxes of the riverine particulate organic carbon of the Zengjiang River, Southern China [J]. Acta Scientiae Circumstantiae, 2004, 24(5): 789-795.
- [18] Sun H G, Han J T, Zhang S R, et al. Transformation of dissolved inorganic carbon (DIC) into particulate organic carbon (POC) in the lower Xijiang River, SE China: an isotopic approach[J]. Biogeosciences Discussions, 2011, 8(5): 9471-

9501.

[19] 原雅琼. 水生光合生物对漓江流域水化学和岩溶碳汇的影响 [D]. 重庆: 西南大学, 2016. 1-69.
Yuan Y Q. Impacts of aquatic organism on hydrochemical characteristics and karst carbon sink in Lijiang basin [D]. Chongqing: Southwest University, 2016. 1-69.

38 卷

- [20] 韩耀全,周解,吴祥庆. 漓江的自然地理与水质调查[J]. 广西水产科技,2007,(2):8-16.
- [21] Dai M H, Yin Z Q, Meng F F, et al. Spatial distribution of riverine DOC inputs to the ocean; an updated global synthesis [J]. Current Opinion in Environmental Sustainability, 2012, 4 (2): 170-178.
- [22] 张永领. 河流有机碳循环研究综述[J]. 河南理工大学学报(自然科学版), 2012, **31**(3): 344-351.

  Zhang Y L. The review of the research of the riverine organic carbon cycle [J]. Journal of Henan Polytechnic University (Natural Science), 2012, **31**(3): 344-351.
- [23] Kendall C, Silva S R, Kelly V J. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States [J]. Hydrological Processes, 2001, 15(7): 1301-1346.
- [24] Redfield A C. The biological control of chemical factors in the environment [J]. American Scientist, 1958, 46 (3): 230A, 205-221.
- [25] LaZerte B D. Stable carbon isotope ratios: implications for the source of sediment carbon and for phytoplankton carbon assimilation in Lake Memphremagog Quebec [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40 (10): 1658-1666.
- [26] 邢长平. 华南亚热带森林土壤<sup>14</sup>C年龄及<sup>14</sup>C示踪研究[D]. 广州: 中国科学院广州地球化学研究所, 1998. 1-57.

  Xing C P. Studies on <sup>14</sup>C age and <sup>14</sup>C tracing for subtropical forest soils in South China [D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Science, 1998. 1-57.
- [27] 申泰铭,李为,张强,等. 流域不同地质生态环境中水体碳酸酐酶活性特征——以桂江流域为例[J]. 中国岩溶,2012,31(4):409-414.
  - Shen T M, Li W, Zhang Q, et al. Carbonic anhydrase activity of the water-body in different eco-environments of river basins: a case study in the Guijiang river basin [J]. Carsologica Sinica, 2012, 31(4): 409-414.

# **HUANJING KEXUE**

Environmental Science (monthly)

Vol. 38 No. 8 Aug. 15, 2017

# **CONTENTS**

| Evaluation and Development of a Weighing Chamber by Using Saturated MgCl <sub>2</sub> Solution                                                                           | ···· LI Xiao-xiao, ZHANG Oiang, DENG Jian-guo, et al. (3095) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Characteristics Research on Carbonaceous Component of Particulate Matter Emitted from Iron and Steel Industry                                                            |                                                              |
| Pollution Characteristics and Source Identification of PAHs in Atmospheric PM <sub>2,5</sub> in Changzhou City                                                           |                                                              |
| Atmospheric Dry Deposition Fluxes and Sources of Polycyclic Aromatic Hydrocarbons in Lanzhou Valley, Northwest China                                                     |                                                              |
| Characteristics and Sources of Elements in Atmospheric Dust Fall in Zhuzhou City, Central China                                                                          |                                                              |
| Atmospheric Pollutant Emission Characteristics from the Cooking Process of Traditional Beijing Roast Duck                                                                |                                                              |
| Exhaust Emission Characteristics of Typical Alkanes from Heavy-Duty Diesel Vehicles Based on a Portable Emission Measurement Sy                                          |                                                              |
| 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7                                                                                                                                 | · SHI Chun-zhen, HAO Xue-wei, SHEN Xian-bao, et al. (3146)   |
| PM <sub>10</sub> Concentration Forecasting Model Based on Wavelet-SVM ····                                                                                               |                                                              |
| Emission Factors and Preliminary Emission Estimates of Air Pollutants from Ships at Berth in the Guangzhou Port                                                          |                                                              |
| Influence of Dust Events on the Concentration and Size Distribution of Microorganisms in Bioaerosols                                                                     |                                                              |
| Odor Emission Characteristics and Pollution Evaluation from Typical Household Rubbish Disposal Facilities                                                                |                                                              |
| Perfluorinated Compounds in Snow from Downtown Hangzhou, China                                                                                                           | ···· ZHANG Ming, TANG Fang-liang, YU Ya-yun, et al. (3185)   |
| Fluorescence Characterization of Fractionated Colloids in Wastewaters Received by Huangpu River                                                                          | NIE Ming-hua, YAN Cai-xia, YANG Yi, et al. (3192)            |
| Sources of Organic Carbon in the Surface Water of Lijiang River                                                                                                          | ZHAO Hai-juan, XIAO Qiong, WU Xia, et al. (3200)             |
| Impacts of Thermal Stratification on the Hydrochemistry and Dissolved Inorganic Carbon in a Typical Karst Reservoir in Summer                                            | WU Fei-hong, PU Jun-bing, LI Jian-hong, et al. (3209)        |
| Comparison of Heavy Metal Contamination Characteristics in Surface Water in Different Functional Areas: A Case Study of Ningbo                                           | XU Mei-juan, TONG Gui-hua, SUN Dan, et al. (3218)            |
| Comparison of Identification Methods of Main Component Hydrochemical Anomalies in Groundwater: A Case Study of Liujiang Basin                                            |                                                              |
|                                                                                                                                                                          | ···· ZHANG Xiao-wen, HE Jiang-tao, PENG Cong, et al. (3225)  |
| Biotic and Abiotic Uptake of Phosphorus in Benthic Sediments of Suburban Streams Under Intense Human Disturbance Scenario                                                | LI Ru-zhong, YE Zhou, GAO Su-di, et al. (3235)               |
| Sedimentary Phosphorus Speciation in the Coastal Hypoxic Area of Changjiang Estuary and Its Environmental Significance                                                   | LIU Jun, ZANG Jia-ye, RAN Xiang-bin, et al. (3243)           |
| Characteristics and the Relationship of Nitrogen and Phosphorus in Soil and Water of Different Land Use Types of a Small Watershed                                       | in the Three Gorges Reservoir Area                           |
|                                                                                                                                                                          |                                                              |
| Characteristics of Carbon Transportation Under Rainfall Events and Associated Carbon Loss Evaluation in Loess Plateau, China: A C                                        | ase Study of Yangjuangou Dam Watershed                       |
|                                                                                                                                                                          |                                                              |
| New Bromated Phenolic Disinfection Byproducts; Mechanism of Their Decomposition During Chlorination                                                                      |                                                              |
| Effects of Algal Morphology and Al Species Distribution on the Coagulation-Ultrafiltration Process                                                                       | ······ ZHANG Da-wei, XU Hui, WANG Xi, et al. (3281)          |
| Functional Group Characteristics of Planktonic Diatoms and Their Relationship with Environmental Factors in the Ruxi River                                               |                                                              |
| Spatiotemporal Variations of Chlorophyll a and Its Relationship to Environmental Factors in Shiyan Reservoir                                                             |                                                              |
| Rhizosphere Microbial Diversity in Different Wetland Microcosms                                                                                                          |                                                              |
| Community Structure of Microorganisms and Its Seasonal Variation in Beihai Lake                                                                                          |                                                              |
| Analysis of Microbial Diversity in a Fluidized-Sand Biofilter Based on High-Throughput Sequencing Technology ZHA                                                         |                                                              |
| Analysis of High-efficiency Denitrifying Bacteria and Embedding Filler Performance and Microflora                                                                        | MENG Ting, YANG Hong (3339)                                  |
| Selection of Microalgae for Biofuel Using Municipal Wastewater as a Resource                                                                                             |                                                              |
| Purification Effect of Piggery Wastewater with Chlorella pyrenoidosa by Immobilized Biofilm-Attached Culture · · · · · · · · · · · · · · · · · · ·                       |                                                              |
| Combination of Microbubble Catalytic Ozonation and Biological Process for Advanced Treatment of Biotreated Coal Chemical Wastewa                                         | ater ·····                                                   |
|                                                                                                                                                                          |                                                              |
| Effect of pH Shock on Nitrogen Removal Performance of Marine Anaerobic Ammonium-Oxidizing Bacteria Treating Saline Wastewater                                            |                                                              |
| Removal of Nitrogen from Alcohol Wastewater by PN-ANAMMOX                                                                                                                |                                                              |
| Biorecovery of Palladium from Simulated Wastewaters and Its Catalytic Property for Methylene Blue · · · · · · · · · · · · · · · · · · ·                                  | ··· KANG Nai-xin, ZHU Neng-wu, GUO Wen-ying, et al. (3385)   |
| Investigation of Initiation and Shock Process of ANAMMOX Based on Color Space                                                                                            |                                                              |
| Fast Start-up of Shortcut Nitrification in a CSTR and an MBR                                                                                                             |                                                              |
| Conversion Pathways of Substrates in Sulfate-Reducing Ammonia Oxidation System                                                                                           |                                                              |
| Effect of Different TOC to NH <sub>4</sub> <sup>+</sup> -N Ratios on Nitrogen Removal Efficiency in the ANAMMOX Process                                                  |                                                              |
| Effects of Salinity on the Operation of EGSB Reactors and the Anaerobic Granular Sludge                                                                                  | 9                                                            |
| Start-up of Granule CANON Process and the Strategy for Enhancing Total Nitrogen Removal Rate                                                                             | • • • • • • • • • • • • • • • • • • • •                      |
| $ Effect \ of \ Extracellular \ Polymeric \ Substance \ (EPS) \ on \ the \ Adsorption \ of \ Perfluorooctane \ Sulfonate \ (PFOS) \ onto \ Activated \ Sludge \ \cdots $ |                                                              |
| ${\it Characteristics of N_2O \ and \ NO_x \ Emissions \ from \ Purple \ Soil \ Under \ Different \ Fertilization \ Regimes}$                                            |                                                              |
| Effect of Plastic Film Mulching on Methane Emission from a Vegetable Field                                                                                               |                                                              |
| Responses of Soil Ammonia Oxidizers to Simulated Warming and Increased Precipitation in a Temperate Steppe of Inner Mongolia …                                           |                                                              |
| Nitrification Activity and Autotrophic Nitrifiers in Long-term Fertilized Acidic Upland Soils                                                                            |                                                              |
| Effects of CaCO <sub>3</sub> Application on Soil Microbial Nitrogen Cycle in an Acid Soil                                                                                |                                                              |
| Responses of Extracellular Enzymes to Nitrogen Application in Rice of Various Ages with Rhizosphere and Bulk Soil                                                        |                                                              |
| Variation in the Temperature Sensitivity of Surface Litter Respiration and Its Influencing Factors                                                                       |                                                              |
| Magnetic Properties of Farmland Soils in Arid Regions in Northwest China and Their Environmental Implications                                                            |                                                              |
| Preparation of Magnetic Biomass Carbon by Thermal Decomposition of Siderite Driven by Wheat Straw and Its Adsorption on Cadmius                                          |                                                              |
| Effects of Traffic-related Air Pollution Exposure on DNA Methylation                                                                                                     |                                                              |
| Effects of Exogenous Microorganism Inoculation on Efficiency and Bacterial Community Structure of Sludge Composting                                                      |                                                              |
| Life Cycle Assessment of Traction Lead-acid Batteries for Electric Bikes in China · · · · · · · · · · · · · · · · · · ·                                                  | LIU Wei, TIAN Jin-ping, CHEN Lü-jun (3544)                   |