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A B S T R A C T

Despite of the fast development of speleothem records, oxygen isotope (δ18O), the main paleoclimatic proxy,
remains complicated in climatic interpretation. Continuous cave monitoring is essential for understanding the
response of stalagmite oxygen isotope to East Asian Summer Monsoon moisture transportation. We introduce a
7 years (2010–2016) study on oxygen isotope of atmospheric precipitation, cave drips and modern speleothems
at Jiguan Cave, central China, located Chinese north–south divide where is sensitive to Asian Monsoon. The
monitoring covered a whole ENSO (El Niño Southern Oscillation) cycle, from El Niño in 2010 to La Niña in 2011
and recovered another El Niño in 2015. The precipitation δ18O shows obvious seasonality (negative in summer
and positive in winter), but air temperature and rainfall amount are not primary controlling factors. The in-
terannual δ18O of precipitation corresponds with ENSO variability, which means δ18O value is positive during El
Niño event and vice versa. We used HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model to
simulate the moisture transportation for rainy season in El Niño and La Niña years, and found the Pacific
contributed over 50% moisture in El Niño years and the Indian Ocean was the predominant oceanic source in La
Niña year. There is no seasonality in drips δ18O value, while the response to ENSO variability is evident on
interannual scale. The stable negative δ18O of drips compared with precipitation indicate there is a threshold for
infiltration, suggesting cave drips are recharged by summer heavy precipitation with light δ18O value, but it’s the
mixture of latest and former rainy precipitation that recharge drips in drought, which has been verified by simple
infiltration model. We found the modern speleothems were precipitated under nonequilibrium fractionation
during drought years, nevertheless, they can record the El Niño related δ18O positive anomaly. Overall, the
modern speleothems can receive the precipitation δ18O signal transferred by drips, and our study offers sig-
nificance for verification of Asian Summer Monsoon driving force and interpretation of stalagmite δ18O.

1. Introduction

Stalagmite, the vital archive for paleoclimate reconstruction, has
developed fast recently due to its series of advantages, such as precise
dating, widely distribution, continuous precipitation, copious proxies
and little external disturbance (e.g., Banner et al., 2007; Cai et al.,
2008, 2010; Cheng et al., 2009, 2016; Shopov et al., 2004; Tan et al.,
2015; Wang et al., 2001, 2017; Yuan et al., 2004; Zhu et al., 2017).
Nevertheless, as the most important proxy, the interpretation of δ18O
remains in argument. Previous studies attributed its controlling factors
to rainfall amount or air temperature. For example, Fleitmann et al.
(2004) found there was significant anticorrelation between stalagmite

δ18O and bands thickness, which reflected the precipitation variation.
Bar-Matthews et al. (2003) revealed the most negative in stalagmite
δ18O from north and central Israel was synchronic with the heaviest
rainfall in east Mediterranean. The air temperature was introduced to
explain the stalagmite δ18O variation in Ireland and Austria (e.g.,
Mangini et al., 2005; McDermott et al., 1999), and supported by the
contemporary increasing growth rate.

In general, the stalagmite δ18O is usually regarded as the East Asian
Monsoon signal in China (e.g., Cai et al., 2010; Cheng et al., 2009;
Dayem et al., 2010; Hu et al., 2008; Maher, 2008; Yuan et al., 2004).
Wang et al. (2001) suggested it was controlled by the ratio between
summer and winter precipitation, and Hu et al. (2008) emphasized the
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rainfall amount effect. Some researches, however, preferred the change
of moisture source rather than amount effect during Holocene in China
(e.g., Maher, 2008; Maher and Thompson, 2012). Such conclusion is
partly supported by Clemens et al. (2010) and Dayem et al. (2010) who
suggested the change of moisture source and upstream rainout process
should be taken into consideration.

Cave monitoring is an effective method to accurately understand the
speleothem δ18O significance, and such study has been implemented as
early as 1980s (Yonge et al., 1985). Treble et al. (2005) disclosed the
evident anticorrelation between precipitation δ18O and rainfall amount
at Moondyne Cave, SW Australia, likely indicating the inaccurate in-
terpretation of stalagmite δ18O as regulated by temperature. Given the
evenly distributed rainfall throughout the year, the seasonality of pre-
cipitation δ18O was attributed to the seasonal change in moisture source
at Gunung Mulu and Gunung Buda National Park (Cobb et al., 2007).
Furthermore, because of homogenization in the bedrock, cave drips
generally exhibit more smooth δ18O pattern than precipitation, sug-
gesting mixture before infiltrating into cave (eg., Bar-Matthews et al.,
2003; Genty et al., 2014; Mischel et al., 2015; Moerman et al., 2014;
Vaks et al., 2003). Hence, the stable drips δ18O are commonly regarded
as the mean annual amount weighted precipitation δ18O for local region
(eg., Williams and Fowler, 2002; Yonge et al., 1985), but due to eva-
poration happened in epikarst or rapid infiltration, drips δ18O can still
reflect apparent variation (eg., Bar-Matthews et al., 1996; Cruz et al.,
2005; Denniston et al., 1999; Van Rampelbergh et al., 2013).

Cave monitoring has been widely carried out in south China. The
good correlation between δ18O of precipitation and drips and meteor-
ological parameters (air temperature and rainfall amount) suggests

speleothem δ18O records monsoon variation (Li et al., 2000). Li et al.
(2011) found the drips δ18O in Furong Cave showed stable value with
no evident rate change, which was attributed to the mixture of atmo-
spheric precipitation. The positive correlation between drip δ18O and
drip rate was observed at Liangfeng Cave (Luo et al., 2014). And the
homogenization effect can be demonstrated by the decreasing δ18O
amplitude of precipitation, soil water and drips (Luo et al., 2013). Duan
et al. (2016) compiled 8 long term monitoring caves in China, and
found anti temperature effect was observed in 7 caves and the amount
effect was feeble. The precipitation δ18O cannot be simply contributed
to temperature or amount effect because of various moisture sources.

As discussed above, current interpretation of speleothem δ18O ba-
sically focuses on amount effect (eg., Bar-Matthews et al., 2003;
Fleitmann et al., 2004; Hu et al., 2008), temperature effect (eg., Feng
et al., 2014; Mangini et al., 2005), monsoon intensity (eg., Cheng et al.,
2016; Wang et al., 2005; Yuan et al., 2004), and moisture source change
(eg., Cobb et al., 2007; Dayem et al., 2010; Maher, 2008; Maher and
Thompson, 2012). Actually, the parallel speleothem δ18O variation in
Chinese monsoon region on different time scales (Liu et al., 2015) po-
tentially suggests controlled by same circulation pattern. Dayem et al.
(2010) found the spatial distance of contemporary speleothems with
parallel δ18O variation was far than 500 km, which was the critical
distance for areas share similar meteorological condition. To explain
this phenomenon, Tan (2014, 2016) proposed circulation effect, which
suggested West Pacific Subtropical High (WPSH) shifted more west-
wards during El Niño events, thus drove more proximal Pacific moisture
to East Asia, and the shorter Rayleigh distillation distance made the
ultimate precipitation with positive δ18O. During La Niña events,
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Fig. 1. (a) Location of study site, flag is Jiguan Cave and black dots are the cities included in GNIP (global network of isotopes in precipitation) and referenced in this
article, (b) the background of study area and two main monsoon systems influencing this region (ISM: Indian Summer Monsoon, EASM: East Asian Summer
Monsoon). (c) Google earth map of Luanchuan County. Jiguan Cave and meteorological station, indicated by green marks. (d) Schematic map of Jiguan Cave. The
sampling sites are marked by black dots. YZT (Yu Zhu Tan) and YCG (Yao Chi Gong) are pools, LYXS (Li Yu Xi Shui) and TGBD (Tian Gong Bing Deng) are drips, DTH
(Dong Tian He) is underground river in the cave. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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however, WPSH moved more eastwards, and moisture from distal In-
dian Ocean relatively increased. The longer distance depleted more 18O,
therefore resulted in more negative precipitation δ18O. Some mon-
itoring and modeling studies have found the positive correlation be-
tween precipitation δ18O and ENSO (El Niño Southern Oscillation) on
interannual scale (e.g., Cai and Tian, 2016; Ishizaki et al., 2012; Vuille
et al., 2005; Yang et al., 2016).

To testify the circulation effect, we choose Jiguan Cave, located
southeast of Chinese Loess Plateau frontier where belongs to Chinese
north–south divide and intersection of humid and semi-arid zone.
Compared with high-latitude mainly influenced by temperature and the
predominant amount effect in low-latitude, the special location of
Jiguan Cave might be sensitive to different moisture sources. Moreover,
this study started from 2010 to 2016, covering a whole ENSO cycle (El
Niño in 2010&2015, La Niña in 2011). Through analyzing the δ18O of
precipitation, cave drips and modern speleothems, we offer significance
for interpretation of speleothem and to verify the driving force for Asian
Summer Monsoon.

2. Materials and method

2.1. Geographical setting and sample collection

Jiguan Cave (33°46′N, 111°34′E) is located at north slope of Funiu
mountain (Fig. 1), ∼4 km southwest of Luanchuan county, Henan
Province, central China. The cave entrance altitude is ∼900m asl., the
length is ∼5600m and one third has been developed for tourism. The
average cave temperature is 16.4 °C and relative humidity keeps higher
than 90% during monitoring period. Mean annual temperature and
rainfall amount recorded by an adjacent meteorological station are
12.1 °C and 840.6 mm (1957–2014), respectively. More than 50% of
annual precipitation occurs in rainy season (July-September). Some
rainfall lasted more than one day, and some storm only lasted∼20min.
The host rock mainly consists of Cambrian limestone (Cai et al., 2008),
with thickness ∼30 to 40m. Vegetation above the cave is dominated by
conifers, oaks and bushes.

From 2010 to 2016, we almost collected every precipitation event.
A precipitation event is defined by both the meteorological station and
our precipitation collector. Sometimes, when the meteorological station
reports rainfall but there is no water in our collector, it is not taken as
an event, and vice versa. The meteorological station reports rainfall
amount everyday (from 20:00 to 20:00), which is considered as an
event and named using the date. Those rainfall events were named after
the first day of raining if they lasted more than one day. In such case,
we replaced new container at 20:00 to avoid enhanced evaporation.
The multiple containers during such a long rainfall event were mixed
and sealed using polyethylene vial and stored in fridge (approximately
4 °C) before measurement. Snow was sealed by same method after melt.
The fast drip site (LYXS: Li Yu Xi Shui, consecutive drip with average
rate≈ 22ml/min) and slow drip site (TGBD: Tian Gong Bing Deng,

average rate ≈ 11ml/min, hiatus in drought years) were collected in
situ every 2months, by the way, we also sampled 2 pools (YZT: Yu Zhu
Tan and YCG: Yao Chi Gong) and an underground river (DTH: Dong
Tian He) for parallel comparison. Modern speleothems were sampled by
placing substrates under these 2 drips and substrate was also replaced
every 2months. Totally, we collected 284 precipitation, 182 cave water
and 42 modern speleothem samples.

2.2. Isotope analysis

The oxygen and hydrogen isotopes of water samples were measured
by water isotopes analyzer (IWA-35d-EP) of Los Gatos Research (LGR)
Company. The standard reference is LGR3A/4A/5A from Los Gatos
Research Company. As an analysis routine, LGR IWA analyzed each
sample 6 times. Because residue of previous sample likely influences
next sample (memory effect), the first two measurements were not
taken as valid data. The 1σ precision (standard deviation based on
sample measurement) is 0.2‰ for δ18O and 0.6‰ for δD. The δ18O and
δ18C of modern speleothems were measured using Finnigan Delta-V-
Plus gas isotope mass spectrometer combined with Kiel IV automated
carbonate device and specific details refer to Li et al. (2011). Each
sample was analyzed 8 times, the long term 1σ precision (standard
deviation based on sample measurement) is 0.1‰ for δ18O and 0.06‰
for δ18C. Isotopic values are reported in delta notation relative to
VSMOW (Vienna Standard Mean Ocean Water) for water and to VPDB
(Vienna Pee Dee Belemnite) for modern speleothems.

2.3. Climate data and back trajectory model

The air temperature and precipitation amount were supplied by
local meteorological station, located in the east county, ∼8.4 km away
from Jiguan Cave. NINO 3.4 SST anomaly data is downloaded from
NOAA (National Oceanic and Atmospheric Administration) climate
prediction center18. We used HYSPLIT Model (Stein et al., 2015) and
Reanalysis daily data with 2.5° resolution to simulate and cluster air
mass trajectories to affirm moisture source for every precipitation event
in rainy season (July–September) during El Niño and La Niña years.
Trajectories were performed four times every day (at UTC 00:00, 06:00,
12:00, and 18:00) and simulating height was set at 850 hPa and moved
backward for 240 h (10 days). We choose 850 hPa because the moisture
content in 850 hPa has been widely used as the main moisture trans-
portation level in both Indian and East Asian monsoon regions, more-
over, 850 hPa contains more moisture than other levels in central-north
China (eg., Basha and Ratnam, 2013; Liang et al., 2013; Ma and Gao,
2006; Shen et al., 2010). All the statistic parameters involved in this
manuscript were processed by SPSS19.

Table 1
Oxygen and hydrogen isotopes of precipitation, cave water and modern speleothems.

minδ18O/‰
(VSMOW)

maxδ18O/‰
(VSMOW)

Standard deviation/
‰

minδD/‰
(VSMOW)

maxδD/‰
(VSMOW)

Standard deviation/
‰

Sample
number

Precipitation -15.66 8.08 3.66 −118.29 45.81 29.24 284
LYXS (drip) −10.20 −6.49 0.94 −70.10 −48.97 6.45 43
TGBD (drip) −10.19 −6.43 1.39 −72.20 −49.43 8.42 10
YCG (pool) −9.70 −5.58 0.96 −67.09 −39.13 7.43 43
YZT (pool) −8.95 −3.73 1.40 −61.10 −35.13 6.47 43
DTH (underground river) −9.24 −6.69 0.55 −63.60 −52.72 2.41 43
LYXS (carbonate) −10.00 −5.02 1.37 27
TGBD (carbonate) −10.09 −6.91 1.03 15

LYXS (Li Yu Xi Shui) and TGBD (Tian Gong Bing Deng) are acronyms of drips as scenic spots in Jiguan Cave; YCG (Yao Chi Gong) and YZT (Yu Zhu Tan) are acronyms
of pools in the cave. DTH (Dong Tian He) is the acronym of underground river located in the deepest part of cave. VSMOW is Vienna Standard Mean Ocean Water.
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3. Result

3.1. Precipitation isotope

The variations of δ18O and δD in precipitation are from −15.66‰
to 8.08‰ (average at −5.45 ± 3.66‰) and from −118.29‰ to
45.81‰ (average at −35.01 ± 29.24‰), respectively (Table 1). This
isotopic variation is covered by previous Chinese precipitation isotopes
report (Liu et al., 2014). The significant seasonality, positive in winter
and negative in summer (Fig. 2b), has been introduced elsewhere in
China (eg., Duan et al., 2016; Luo et al., 2013; Luo et al., 2014; Wang
and LinHo, 2002; Wang et al., 2015; Xie et al., 2011). Some researchers
contributed it to seasonal moisture source variation (eg., Araguas-
Araguas et al., 1998; Duan et al., 2016; Feng et al., 2017; Hoffmann and
Heimann, 1997; Thomas et al., 2016). For example, the monsoonal
rainfall in summer generates lighter isotopes and inland or westerly
moisture in winter, common in eastern and central China, leads to
heavier isotopes.

3.2. Oxygen isotopes of cave water and modern speleothem

As showed in Fig. 3, the δ18O of cave water fluctuated evidently,
from −10.20‰ to −6.43‰ for drips, −9.70‰ to −3.73‰ for pools

and −9.24‰ to −6.69‰ for underground. There is no seasonal var-
iation in drips. Fast drip (LYXS) and slow drip (TGBD) rapidly reduced
by 3.55‰ from 2009 to 2010 and kept stable (variation≤ 0.88‰) in
the following 4 years, then fast increased 2.23‰. The parallel pattern
and approximate values suggest same recharge source. The deepest
underground river (DTH) δ18O showed similar pattern with more gentle
variability. The changes of δ18O in 2 pools are complex. YCG, the pool
located nearby LYXS, showed deviating trend in comparison to LYXS
despite it was recharged by LYXS, and YZT showed significant sea-
sonality (negative in summer and positive in winter) since 2012.

The modern speleothems δ18O values ranged from −10.00‰ to
−5.02‰ (averaged at−8.02 ± 1.37‰) for LYXS and from−10.09‰
to −6.91‰ (averaged at −8.69 ± 1.03‰) for TGBD. It seemed
modern speleothems δ18O were seasonal in 2010 and 2011, negative in
summer and positive in winter, which was similar to precipitation.
Thereafter, LYXS showed stable negative value (−9.50‰ ± 0.34‰),
and the synchronous drips exhibited comparable stability
(−9.93‰ ± 0.33‰). Hiatus more than 1 year appeared since 2013
because of serious drought, and carbonate recovered in Nov. 2014 since
drought was released by increasing rainfall and drips were over-
saturated for precipitation (Sun et al., 2017). The δ18O value was more
positive than that of stable period by 2‰, which responded to the
synchronous enrichment in precipitation and drips δ18O.

4. Discussion

4.1. Controls on δ18O of precipitation

Temperature effect (e.g., Dansgaard, 1964; Rozanski et al., 1992)
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meteorological station, which is national base station.) (For interpretation of
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version of this article.)
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and amount effect (e.g., Dansgaard, 1964; Jones and Banner, 2003) are
denied because of poor correlation between monthly precipitation
amount weighted δ18O and meteorological data (shown in Table 2).
Given the fact that there is a good correlation between air temperature
and rainfall amount (r2=0.319, p < 0.001, n=79), and this phe-
nomenon has been reported by other cave monitoring in Chinese
monsoon region (eg., Ban et al., 2008; Duan et al., 2012; Li et al., 2011;
Luo and Wang, 2008; Ruan and Hu, 2010), which means their re-
lationships with precipitation δ18O would be disturbed by each other.
We also calculated PCC (partial correlation coefficient) to eliminate
potential disturbance (e.g., Dayem et al., 2010; Johnson and Ingram,
2004). The PCC values are −0.109 (p=0.342, n=79) for δ18O and
amount and −0.091 (p=0.43, n=79) for δ18O and temperature. The
low correlation coefficients and PCC suggest temperature and pre-
cipitation amount are not predominant controlling factors for pre-
cipitation δ18O.

The good linear relationship between δ18O and δD in precipitation
was defined by Craig (1961) as GMWL (global meteoric water line):
δD=8 δ18O+10, and the study of meteoric water line is useful to
understand climatic change and moisture source shift (Price et al.,
2008). Gourcy et al. (2005) offered an updated GMWL: δD=8.07
(± 0.02) δ18O+9.9 (± 0.1) by compiling all GNIP (global network of
isotopes in precipitation) stations data from 1961 to 2000. The Chinese
local meteoric water line (LMWL) was determined by Zheng et al.
(1983): δD=7.9 δ18O+8.2. Wei and Lin (1994) demonstrated that
LMWL could vary on interannual scale among Chinese monsoon regions
because of change in moisture source. We calculated the LMWLs every
year at Luanchuan county (shown in Table 3). It is clear that the slope
and intercept of LMWL in 2010 are evidently larger than that of GMWL,
the slope and intercept of 2011 and 2013 are close to GMWL, and slope
and intercept of 2012, 2014, 2015 and 2016 are obviously smaller than
that of GMWL. We recalculated the LMWL based on all 284 precipita-
tion events in 7 years since single year was unrepresentative, and result
was δD=7.63 (± 0.14) δ18O+6.55 (± 0.94), most similar to 2012.
Merlivat and Jouzel (1979) suggested LMWL was determined by air
temperature, rainfall amount and moisture source. While 2011 and
2013, with most similar LMWL, show the most temperature difference
in the monitoring, and annual rainfall amount in 2011 is more than
twice of 2013. Moreover, the slope and intercept of 2015 is obviously
smaller than that of 2011 despite of their approximate annual tem-
perature and rainfall amount. All of abovementioned analysis infer
temperature and rainfall amount are not controlling factors for

relationship of δ18O and δD in precipitation.
The monthly and annual weighted average precipitation δ18O were

calculated based on each precipitation event (Table 4, null represents
we did not collect precipitation sample or rainfall amount data from
meteorological station was not available). There is obvious inter-annual
variation in δ18O, from −7.62‰ in 2010 to −8.50‰ in 2011. After
2011, precipitation δ18O gradually enriched and reached its most po-
sitive value at −5.78‰ in 2015. This pattern is similar to ENSO
variability (El Niño in 2010, 2015 and La Niña in 2011). Furthermore,
the ENSO also imprinted on the rainfall amount. Previous studies re-
ported the great possibility of more precipitation in East Asia during El
Niño decaying phase (eg., Ju and Slingo, 1995; Zheng and Zhu, 2015),
and this hypothesis is verified by the stupendous precipitation in Jul.
2010 (> 400mm, twice in comparison to history record). The El Niño
event in 2015 is the most powerful in this century, correspondingly, the
amount weighted δ18O is the most positive in monitoring, approxi-
mately equal to average δ18O in Wuhan. Moreover, amount weighted
δ18O in 2011 (La Niña event) is most negative and even lighter than
precipitation δ18O of Xi’an and Zhengzhou (IAEA/WMO, 2001). Given
the positive correlation between amount weighted precipitation δ18O
and NINO 3.4 SST Anomaly (r=0.715, p < 0.1, n=7), ENSO varia-
bility is potentially an important reason for interannual variation of
precipitation δ18O.

Circulation effect speculates WPSH would shift more westwards
during El Niño events, and drive more proximal Pacific moisture ex-
perienced less 18O depletion to East Asia, thus leading to more positive
precipitation δ18O (Tan, 2014). To verify this assumption, we used
HYSPLIT model and monthly Reanalysis data (2.5° resolution) offered
by NOAA to simulate moisture trajectories for every precipitation event
during rainy season (July to September) in 2010, 2015 (El Niño year)
and 2011 (La Niña year). We divided the moisture source into three
parts: Indian Ocean, the Pacific and others composed of China South
Sea, inland, westerly and arctic sources. We suggested the vapor traced
back to Arabian Sea and Bay of Bengal was treated as Indian Ocean
origin. China South Sea was surrounded by Philippines, Vietnam,

Table 2
Correlation coefficients between monthly weighted precipitation δ18O and
monthly mean air temperature and precipitation amount in study area.

r2 δ18O precipitation amount air temperature

δ18O 1 0.036* 0.033
Precipitation amount 1 0.319***

air temperature 1

* Represent significance level is over 90% (2-tailed test).
*** Represent significance level is over 99.9% (2-tailed test).

Table 3
Local meteoric water line in study area.

year sample number slope intercept air temperature/°C precipitation/mm r2

2010 39 8.94 ± 0.34 17.89 ± 2.54 12.50 1009.7 0.95
2011 33 8.39 ± 0.53 9.82 ± 3.63 12.05 949.5 0.89
2012 42 7.64 ± 0.34 6.77 ± 2.18 12.17 639.8 0.92
2013 36 8.24 ± 0.46 9.10 ± 3.10 13.65 434.6 0.90
2014 39 6.92 ± 0.42 2.12 ± 2.43 12.91 782.5 0.88
2015 51 7.16 ± 0.29 5.81 ± 1.80 12.63 911.4 0.93
2016 44 7.34 ± 0.38 3.94 ± 2.43 13.31 673.0 0.90
2010∼ 2016 284 7.63 ± 0.14 6.55 ± 0.94 12.71 771.5 0.91

Table 4
Amount weighted mean δ18O of precipitation in study area (VSMOW/‰).

2010 2011 2012 2013 2014 2015 2016

Jan −12.29 −7.84 −3.62 −5.47 −5.54 −6.42
Feb −5.71 −3.73 −3.49 −6.95 −5.16 −−7.20 −1.97
Mar −6.40 −11.47 −2.27 −7.48 −5.15 −3.45 −7.23
Apr −3.18 −0.42 −2.24 −2.62 −1.30 −2.98 −5.69
May −8.43 −2.16 −2.53 −2.67 −3.30 −4.30
Jun −4.91 −7.45 −8.29 −6.93 −4.73 −9.89 −6.88
Jul −7.84 −11.02 −11.02 −8.83 −7.00 −7.16 −10.80
Aug −7.86 −6.34 −8.91 −8.45 −7.39 −7.78 −8.64
Sep −12.39 −5.13 −9.32 −9.44 −9.88 −4.39 −4.93
Oct −5.89 −2.77 −8.69 −6.78 −4.36 −10.50
Nov −6.77 −5.34 −7.88 −7.60 −8.75 −8.33 −4.07
Dec −7.28 −8.33 −5.25 −4.99 −8.44
annual −7.62 −8.50 −8.28 −6.17 −6.97 −5.78 −7.03

Null represents that station recorded some small rainfall but we did not collect
precipitation sample or when we got sample but station did not record rainfall.
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Malaysia and China mainland. The Pacific source is defined as the vapor
originated near east Chinese and Japanese coastlines. The other three
sources, accounting for little significance, maily reflect vapor from local
or westerly transportation and polar intrusion. As shown in Fig. 4 and
Table 5, the Pacific predominately contributed 63% and 55% of
moisture (amount weighted proportion) in 2010 and 2015, respec-
tively. The Indian Ocean became the main marine moisture source in
2011, accounting for 38%, while the Pacific contributed to 11%. The
cluster results of top 2 heaviest precipitation in 3 rainy seasons and
integrated moisture flux verify circulation effect (Fig. 4). We also cal-
culated the correlation of total 39 precipitation events and different
moisture sources. The correlation coefficients are 0.351 (p < 0.05,
n=39) and -0.451 (p < 0.01, n=39) for Pacific and Indian Ocean,
respectively (Table 5). In fact, the monthly precipitation distribution in
2015 exhibited anomalies. The majority of precipitation occurred in
advance from March to June. We simulated the strongest precipitation
on 31st March (> 50mm/d) and found most moisture originated from
inland or transported by westerly (Fig. 4h). Pre-monsoon precipitation
is enriched in 18O (Yu et al., 2014). It might be this temporal anomalous
precipitation combined with El Niño effect result the most positive
oxygen isotope in 2015.

Although there are many reports have emphasized the effects of
upstream process and convection intensity in vapor source on the

interannual variation of precipitation oxygen isotope (eg., Cai and Tian,
2016; Cai et al., 2017; Lee and Fung, 2008; Liu et al., 2014; Moore
et al., 2014), the above discussion indicates precipitation δ18O is
regulated by ENSO variability and the increasing proportion of
moisture in Pacific is coming at the expense of Indian Ocean.

4.2. Relation of precipitation and drips

The inheritance of drips to precipitation after infiltration would be
disturbed by specific cave system (Fairchild and Baker, 2012). The si-
milar range and trend indicate LYXS and TGBD share same recharge
source. There is no evident seasonal trend and CV (coefficient of var-
iation) of LYXS is only 16.01% of precipitation. Such narrow amplitude
has been reported by previous works (eg., Caballero et al., 1996; Genty
et al., 2014; Li et al., 2011; Luo and Wang, 2008; Williams and Fowler,
2002; Yonge et al., 1985) and attributed to mixing process in overlying
conduits and fissures. Generally, drips would be a reliable indicator for
outside precipitation if there is no evident non-equilibrium fractiona-
tion during infiltration, the couple of δ18O and δD would plot near the
LMWL (e.g., Caballero et al., 1996; Cruz et al., 2005). And there is
potential evaporation if drips plot below LMWL (Pape et al., 2010). The
upper location of drips compared with LMWL infer no or less eva-
poration, furthermore, Clark and Fritz (1997) and Lacelle et al. (2004)

Fig. 4. Cluster analysis of backward trajectory for the top 2 heaviest precipitation event (a, b, d, e, g, h) and the integrated water vapor flux of rainy season in 2010&
2011&2015 (c, f, i, vector unit: kg/m/s), the original data is offered by NOAA Air Resources Laboratory (Reanalysis data: https://ready.arl.noaa.gov/ready2-bin/
extract/extractfile.pl) and NCEP/NCAR Reanalysis Monthly Means (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.surfaceflux.html).
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attributed such pattern to the fact condensed water mixed into drips or
drips basically reflected the precipitation originated from humid marine
moisture (Rozanski et al., 1992). In the monitoring, most drips are
plotted above or near LMWL (Fig. 5), indicating negligible evaporation
and drips are mainly recharged by precipitation. The multiyear δ18O
are −9.14 ± 0.97‰, −8.54 ± 1.56‰ and −5.57 ± 3.69‰ for
LYXS, TGBD and precipitation, respectively. The relative negative va-
lues in drips are contradictory to the enrichment caused by evaporation
or reaction between bedrock and water stored in fissures and conduits.
Given the stability of drips δ18O (variation≤ 0.88‰) from 2011 to
2014, we suggest there is a threshold (eg., Bar-Matthews et al., 1996;
Fairchild and Baker, 2012; Genty et al., 2014; Jones and Banner, 2003;
Pape et al., 2010; Tooth and Fairchild, 2003) of precipitation need to be
exceeded to form effective replenishment, which means precipitation
would be lost by evaporation, transpiration or runoff in the epikarst if
precipitation is small (Genty et al., 2014). Although the amount effect is
suitable because heavy precipitation usually experienced serious de-
pletion in 18O, it’s not reasonable to utilize this hypothesis to explain
our result due to the poor relation between amount and precipitation

δ18O in our study area. The seasonal recharge might be why drips δ18O
are lighter than precipitation, since heavy monsoon rainfall (depleted in
18O) occurred during July to September accounts for> 50% in the
year. Therefore, rainy precipitation is the predominant recharge source.
The plausible evidence is the drips from 2011 to 2014 plot above LMWL
(shaded in Fig. 5), indicating humid marine origin (Rozanski et al.,
1992), and the possibility of condensed water (eg., Clark and Fritz,
1997; Lacelle et al., 2004) is excluded due to fast dripping rate, which
means the condensed water effect is of little importance. We chose the
stable period (2011–2014) to verify our hypothesis because growing
drought in this period was most likely to make rainy season the major
recharge source. The method supplied by Moerman et al. (2014) was
employed to calculate the amount weighted precipitation δ18O in rainy
seasons, corresponding drips δ18O were set from current to next pre-
rainy season weighted by dripping rate. The rainy precipitation δ18O in
2010 was also calculated as we speculated it was the main replenish-
ment for drips from rainy season in 2010 to pre-rainy season in 2011.
Results showed δ18O value of drips, from rainy season in 2010 to pre-
rainy season in 2013, agreed well with the former latest rainy pre-
cipitation. While, drips exhibited ∼0.6‰ to 1‰ lighter than rainy
precipitation in 2013 and 2014 (Table 6). We suggest this deviation is
caused by the serious drought, means the rainy precipitation is sig-
nificantly less than usual and partly lost by evaporation in the soil.
Therefore, the drips δ18O reflect the combination of corresponding
rainy precipitation and previous water in the overlying aquifer. We
speculated the previous water is mixture of rainy precipitation from
2011 to 2012 or 2012, and utilized a simple bivariate model,

= × + × −δ O δ O f δ O (1 f)18
d

18
o

18
l

where δ18Od is the isotopic composition of drip, δ18Oo is the isotopic
composition of previous water in aquifer, δ18Ol is the isotopic compo-
sition of latest rainy precipitation, and f is the proportion of previous
water in the mixture, to quantify different sources. The previous mixed
precipitation from 2011 to 2012 and 2012 in aquifer are −9.79‰ and
−9.88‰, respectively, hence, the rainy precipitation in 2013 con-
tributed to only 3%–10%. The same method was implemented to verify
rainy precipitation in 2014 and its following responding drips. We
found the contribution of 2014 to drips increased to ∼40%, which was
corresponded to the rainfall recovery in the rainy season in 2014. Ex-
cept for the stability during 2011–2014, drips in 2010 and 2015 showed
most positive δ18O value and largest amplitude (Fig. 3), corresponding
to the active Pacific and negative Indian Ocean. Based on above dis-
cussion, the drips in Jiguan Cave mainly reflect the latest rainy pre-
cipitation or previous 1–2 years in ordinary and drought year,

Table 5
Contribution of different moisture sources for precipitation event during rainy
season (Jul–Sep) in 2010, 2015 (El Niño) and 2011 (La Niña).

Date δ18O
(VSMOW/
‰)

Precipitation/mm Indian
Ocean/
%

The
pacific/
%

Other
sources/%

2010-7-1 −6.41 9.7 15 63 22
2010-7-2 −9.96 20.7 18 82 0
2010-7-8 −5.02 2.7 28 30 42
2010-7-9 −6.18 37.2 21 5 74
2010–7-15 −9.97 84 0 100 0
2010-7-22 −7.27 241.7 0 85 15
2010-7-31 −10.54 0 43 57 0
2010-8-4 −8.29 1.6 34 26 40
2010-8-10 −11.22 12.1 33 8 59
2010-8-18 −7.65 199.1 16 41 43
2010-9-5 −11.96 99 0 50 50
2010-9-24 −15.66 13 0 26 74
2011-7-1 −6.23 0.3 13 33 54
2011-7-3 −12.32 111.7 39 18 43
2011-7-12 −7.16 10.3 28 0 72
2011-7-21 −4.38 3.9 0 68 32
2011-7-29 −10.22 97.2 51 0 49
2011-8-4 −6.47 36.7 23 0 77
2011-8-16 −4.75 0 30 70 0
2011-8-18 −6.16 25.8 41 33 26
2011-8-28 −7.18 0 0 35 65
2011-9-4 −4.99 0 0 46 54
2011-9-9 −5.55 2.8 0 38 62
2011-9-27 −5.06 17.5 0 0 100
2015-7-14 −4.23 26.3 0 100 0
2015-7-21 −4.21 25.1 0 100 0
2015-7-30 −14.49 20.7 25 0 75
2015-8-4 −12.18 29.2 73 0 27
2015-8-9 −4.86 4.8 40 28 32
2015-8-11 −15.40 6.2 42 58 0
2015-8-18 −5.91 22 0 100 0
2015-8-23 −2.41 16.9 0 53 47
2015-8-26 −7.17 0.6 0 51 49
2015-8-29 −6.73 27.3 0 20 80
2015-9-4 −7.20 13.4 0 35 65
2015-9-9 −3.49 24.2 0 74 26
2015-9-22 −2.74 3.6 0 73 27
2015-9-24 −5.31 5.3 0 100 0
2015-9-28 −2.14 6.4 0 78 22

The moisture source is basically divided in 3 sections, including Indian Ocean,
the Pacific and other composed of China south sea, inland, westerly, and tiny
arctic vapor.
Correlation coefficient between precipitation δ18O and Indian Ocean ratio:
−0.451, p < 0.01, n= 39.
Correlation coefficient between precipitation δ18O and the Pacific ratio: 0.351,
p < 0.05, n= 39.
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Fig. 5. Relationship between δD and δ18O of cave water, shaded rectangle re-
presents drips collected from LYXS during drought (2011–2014) with relative
stable light δ18O value, black line is the local meteoric water line.
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respectively. And the ENSO related variation of precipitation δ18O can
be recorded in drips on interannual scale.

The trend of DTH is similar to that of LYXS: the fast decrease
(∼2.22‰) from 2010 to 2011, relative stable period during
2011–2014, and gradually soared up since 2015. But the descent ac-
complished∼8months later than drips and the amplitude was less than
drips, which might be related to its deepest location, means longer
mixture process. The δ18O trend of YCG is complex, gentle decrease
with fluctuation during 2010–2011 and gradual increase since 2014
seems similar to the drips and precipitation, while the unexpected in-
crease from 2012 to 2014 punctuated this pattern. We suggest such
deviation is the mirror of extreme drought during 2012–2014. Scenic
staffs introduced some drips hiatus and the downside of DTH level,
moreover, the relative humidity in 2013 decreased to ∼90% allow for
its usual value was>95%. Given the long residence time exposed to
air, the anomaly is basically cause by evaporation during drought,
supported by the lower location compared with LMWL (Fig. 5). Another
pool, YZT, showed distinct seasonal δ18O cycle (negative in summer
and positive in winter) since 2012. It is connected to entrance by
manmade tunnel (∼20m) and the temperature pattern is same as
outside. Therefore, temperature effect is not the reason for oxygen
isotope variation. And it’s not plausible to attribute seasonality to
suddenly increase in conduits connectivity because of stable tectonic
feature (Song et al., 2009). We suggest ventilation is the main cause
since air exchange results condensed water in summer and evaporation
in winter (De Freitas and Schmekal, 2003), this alternation explains
seasonal oxygen isotopic cycle.

4.3. Significance for modern speleothem

It’s crucial to verify whether speleothem was formed under equili-
brium fractionation before paleoclimatic reconstruction (eg., Hendy,
1971; O'Neil et al., 1969). We chose Kim and O'Neil (1997):

− ≈ − = −
−δ O δ O 1000lnα(calcite drip) 18.03(10 T ) 32.4218

c
18

w
3 1

hereinafter referred to as KO function, and Tremaine et al. (2011):

− ≈ − = −
−δ O δ O 1000lnα(calcite drip) 16.01(10 T ) 24.618

c
18

w
3 1

hereinafter referred to as T function, where δ18Oc is the isotopic com-
position of modern speleothem (VPDB), δ18Ow is the isotopic compo-
sition of drip (VSMOW), and T is Kelvin temperature, to verify our
results (Fig. 6). It should be noted 2months lag between drips and
modern speleothems, for example, we suggest carbonate collected from
June is corresponded to drips in April. There are little differences for
simulated oxygen isotopic composition between 2 equations, ∼1‰
heavier for T function. The mean δ18O value of LYXS
(−8.22 ± 1.38‰) is similar to T function (−8.26 ± 1.13‰) and
mean δ18O value of TGBD (−8.99 ± 1.00‰) is close to KO function
(−9.02 ± 1.66‰). The difference of measured and simulated data is
basically same with McDermott et al. (2011), however, the dramatic
fluctuation in 2011–2014 (Fig. 2d) probably denote non-equilibrium
fractionation. The intense positive deviation of δ18O in Dec.2012 and
Jun.2013 (∼4‰, Fig. 6) responds to the serious drought in 2012 and
2013 reflected by positive anomaly in YCG δ18O value, implying effect
of evaporation.

There is an significant correlation between δ18O and δ13C in LYXS
(r=0.556, p < 0.01, n=27), indicating nonequilibrium fractionation
(Cai et al., 2010), and the correlation coefficient weakens to 0.497
(95% significance level) when we remove these anomalous positive
data in drought years. The coefficient of TGBD is only 0.248 (p > 0.1,
n=15), which is corresponded to Mickler et al. (2004) conclusion that
kinetic fractionation is easier to occur for drips with higher rate.

It’s clear that δ18O value of modern speleothem is controlled not
only by drip, but also by the specific cave condition, such as dripping
rate, temperature and relative humidity. Although the effect of drought
results positive deviation, the oxygen isotopic composition of modern
speleothem showed synchronous response to ENSO variation, positive
in El Niño and negative in La Niña. Such phenomenon suggests that
ENSO-driven precipitation δ18O variation can be transferred to modern
speleothem by drip. However, stalagmite should be prudently used for
paleoclimate recovery when without cave monitoring research.

5. Conclusion

The results of 7 continuous years monitoring for precipitation, cave
drips and modern speleothems are as follows: (1) the range of pre-
cipitation δ18O is −15.66‰ to 8.08‰ and there is obvious seasonal
variation, negative in summer and positive in winter. Statistic test
suggests rainfall amount and air temperature are not basic controlling
factors for precipitation δ18O value. The interannual pattern responds
to ENSO variability: heavier in El Niño and lighter in La Niña. The si-
mulation of HYSPLIT model based on rainfall event in rainy season of
ENSO years shows moisture from Pacific contributes more than 50%
and Indian Ocean becomes the predominate marine source in El Niño
and La Niña, respectively, which preliminarily verify circulation effect.
(2) δ18O of drips show narrow variation in comparison to precipitation
and no seasonality because of homogenization in upper aquifer. The
stable and light δ18O value of drips in drought indicated that drips were
recharged mainly by rainy season (July-September) precipitation with
relatively negative δ18O value because small rainfall might be lost by
transpiration and evaporation in the overlying soil. Such hypothesis is
verified by simple infiltration model, but it’s the mixture of latest and
previous rainy precipitation that replenish drips in drought. (3) We
have carried out equilibrium fractionation test, and modern spe-
leothems exhibit some nonequilibrium fractionation happened, espe-
cially during extreme drought period, ∼4‰ more positive than simu-
lated value. Nevertheless, the ENSO driven interannual pattern of
precipitation δ18O has been transferred to speleothems through drips.

Overall, it is of significance to emphasize the cave monitoring to
further understand δ18O process from precipitation to modern spe-
leothem before climatic reconstruction.
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