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a b s t r a c t

Effectively exploring the impact of urban expansion on ecosystem health has become a hot topic for
sustainable development of cities. However, analyzing the relationship between urban expansion and
ecosystem health from a multi-perspective view is relatively rare. Here, taking 438 cities in Southwest
China as the study area, we attempted to quantify the relationship between urban expansion and
ecosystem health, taking into account population density, economic structure, urban area size, and
geological environment. First, the urban ecosystem health was assessed based on the vigor-organization-
resilience-services framework. Second, we quantified urban expansion from three aspects: the intensity
of expansion, growth modes and urban forms. Finally, the panel data analysis was used to focus on which
aspects of urban expansion effect on ecosystem health. The result showed that when the intensity of
urban expansion increased and the growth mode changed from edge-expansion type to outlying type,
the ecosystem health experienced a significant decline. In addition, there was significant negative cor-
relation between urban size and ecosystem health within all types of cities, except for the mega-scale
cities (>100 km2). A regular and aggregated urban form was benefit for ecosystem health at the
medium-sized (100e500 person$km�2) and large-sized cities (500e1000 person$km�2). Moreover, ur-
ban form complex had a significant negative impact on ecosystem health in industry cities (secondary
industry accounts for more than 50%) than in the service cities (tertiary industry accounts for more than
50%). The ecosystem health of karst cities was more sensitive to the fragmentation of urban core than
non-karst cities. These findings will help to further understand the influence mechanism of urban
expansion on ecosystem health under different scenarios and could provide a scientific basis for
formulating reasonable urban planning.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Natural ecosystems provide both the material basis and
ecosystem services for the survival and development of human
society. A healthy ecosystem is fundamental to guarantee the
subsistence of human beings and achieve the sustainable devel-
opment of socioeconomic (Rapport and Maffi, 2011; Peng et al.,
2015). However, with increased intensity and breadth of human
activity, the natural patches in rapidly urbanizing areas have pre-
sented a remarkable, highly fragmented feature, which has signif-
icantly influenced the structure and function of regional ecosystem,
resulting in a series of eco-environment problems, such as urban
heat island effect, soil erosion, biodiversity loss and so on, There-
fore, a systematic monitoring and evaluating the health status of
ecosystem is necessary for regional sustainability. (Rapport and
Hil�en, 2013).

Ecosystem health is a comprehensive indicator that reflects the
stability and sustainability of the ecosystem, that is to say, the
ecosystems have the ability to maintain its organization, self-
operation and resilience to external disturbance (Rapport et al.,
1998; Costanza, 1992). Ecosystem health assessment is considered
to be an effective method to measure the stability and vulnerability
of ecosystems, which provides a scientific basis for integrating
ecosystem assessment and management at multi-scales (He et al.,
2019). In terms of evaluation methods, the indicator system
method is widely applied to assess ecosystem health, which mainly
includes vigor-organization-resilience (VOR) evaluation method,
principal component method, Pressure-State-Response (PSR)
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model and Driving force-State-Response (DFSR) model (Fu et al.,
2009; Peng et al., 2015). Among them, the assessment framework
of vigor-organization-resilience was widely used in the previous
studies. Costanza (1992) proposed that a healthy ecosystem can be
defined by three features: vigor, organization, resilience. Vigor re-
fers to the metabolism or primary productivity of a system; orga-
nization describes the diversity and quantity of interactions
between the components of ecosystems; resilience refers to the
ability of the ecosystem to maintain its structure and function
under stress. Besides, as an important indicator, ecosystem services
are also applied to ecosystem health assessment, which can make a
comprehensive assessment of ecological effect with urban expan-
sion (Peng et al., 2017). To date, ecosystem health research has
made evident progress in various ecosystems, such as forests
(Styers et al., 2010), grassland (Zhao et al., 2017), waters (Zhao et al.,
2019a, 2019b), urban (Su et al., 2010) and wetland (Chi et al., 2018).
However, most studies on ecosystem health assessment were
conducted at national, provinces, or urban agglomerations, but not
at smaller scales, such as the county scale. As the county is the basic
unit of economic and social development in China, the evaluation of
regional ecosystem health based on county scale can provide more
spatially explicit support for the formulation of ecological protec-
tion policy than previous research at the provincial scale. Further-
more, previous studies mainly focused on the assessment of
ecosystem health, while few studies have explored the driving
mechanism of ecosystem health.

Human activities have been demonstrated to significantly affect
the regional ecosystem health, such as population size, economic
structure, and road network density (Shi et al., 2019; Peng and
Wang, 2019). For instance, Kang et al. (2018) showed that the in-
crease of artificial surface ratio would lead to the decline of
ecosystem health. In recently years, many studies have gradually
realized that urban expansion is the most crucial factor, which has
resulted in various impacts on the structures, functions and dy-
namics of nature systems at multi-scales (Liu et al., 2010). For
example, Xia et al. (2019) explored the relationship between urban
size growth and carbon metabolism rate with land use change and
found that urban size growth had a negative impact on carbon
metabolism rate. UsingMyanmar as a case study,Wang et al. (2018)
analyzed the impact of urban expansion on the regional environ-
ment and confirmed that a 1% increase of built-up area could
potentially lead to a decrease in NPP of 34.3 kg/m2. However, pre-
vious studies have two main weakness. Firstly, most studies of
these effects only focused on a single aspect (i.e., urban size and
urban expansion intensity), might ignore other potential factors
(i.e., urban form, urban expansion mode, transportation, urban
industry level, and the spatial neighboring of mix land use) that
could affect the interactions between urban expansion and
ecosystem health (Ding and Li, 2017; Shen et al., 2020). For
instance, Some studies have indicated that a compact urban form,
characterized by highly dense development and roughly circular
urban area, was beneficial to ecosystem health, such as reducing
CO2 emissions, reliving urban heat effect and promoting air quality
(Peng et al., 2015; Shi et al., 2019). Conversely, a scattered urban
form have a significant negative effect on ecosystem health. In
addition, Yuan et al. (2019) indicated that the high-speed urban
expansion and disordered growthmodewill occupy a large number
of ecological land, reduce the supply of ecosystem services, which
will ultimately be detrimental to the health of regional ecosystem.
Thus, characterizing the spatial pattern and expansion dynamic of
the urban landscape is the fundamental first step to understand the
relationship between urban expansion and ecological process (Li
and Li, 2019). Secondly, due to regional difference, the potential
effect of social-economic structure, ecological protection policy,
geological environment and urban landscape structure also not be
2

systematically considered, and the results might be biased (Shi
et al., 2019). For example, Luo et al. (2019) indicated that
although the urban land increased continuously from 2009 to 2016
in the Yangtze River Economic Belt, comparing the pre-ecological
policies period, the ecosystem services value showed a steady in-
crease trend after the implementation of the ecological policy. Tao
et al. (2020) found that urban fragmentation and compactness had
a relatively weaker influence on air pollution for large cities than
for small and medium-sized cities. He et al. (2019) analyzed the
driving factors of ecosystem health at the national scale, which
found that ecological conservation project was the key factor
impacting ecosystem health in Southwest China, while the
ecosystem health changes in the southeastern coastal region and
the North China Plain region mainly arose from socio-economic
factors. Therefore, at the spatial-temporal scale, how to compre-
hensively explore the effects of urban expansion on ecosystem
health from a multi-perspective is still poorly understood.

Southwest China, as the most important ecological barrier for
the Yangtze River Basin, plays an important role in safeguarding
ecological security and food security (Peng and Wang, 2019). In
recently years, with the implementation of the Western China
Development strategy, rapid and large-scale urbanization has
resulted in fundamental changes in the structure and function of
natural ecosystem, which in turn seriously threatened the sus-
tainable development of regional socioeconomic (Peng et al., 2016).
Therefore, in this study, the southwestern region was chosen for
evaluating the status of ecosystem health that was critical to
regional ecosystem management. Through the panel data analysis,
the impact of urban expansion on ecosystem health from a multi-
perspective view was explored. In detail, this study had two main
objectives: 1) to analysis the impact of various aspects of urban
expansion on regional ecosystem health; 2) to explore whether the
relationships between urban expansion and ecosystem health
change with different population density, economic structure, ur-
ban area size, and geological environment. The endpoints of this
study were to provide a deep understanding of the relationship
between urban expansion and ecosystem health and to find a sci-
entific path to maintain the sustainable development of urban
ecosystem.

2. Materials and methods

Based on spatial and statistical data, this study was conducted
with three sections (Fig. 1). The first one was to assess the urban
ecosystem health with the vigor-organization-resilience-services
framework based on land use/cover data. The second section was
to quantify urban expansion from three aspects (i.e., the intensity of
expansion, growth modes and urban landscape metrics) based on
urban built-up area dataset obtained from land use/cover data. The
last section was to explore the relationship between urban
expansion (based on urban landscape metrics) and ecosystem
health using the panel data model from a multi-perspective view.
The details were analyzed in the next sub-section.

2.1. Study area and data source

Southwest China lies between 97�210-110�110 E and 21�080-
33�410 N, with an total area of about 250 � 104 km2, accounting for
approximately a quarter of China’s land surface (Fig. 2). The region
includes 1 municipality (Chongqing) and 3 provinces (Sichuan,
Guizhou and Yunnan), with a total of 438 counties. In terms of
topography, the region has a high percentage of mountains and
hills except for the Sichuan Basin, with an elevation ranging from
77 to 6233 m. The climate is subtropical moist monsoon with
abundant precipitation and high vegetation coverage. Due to



Fig. 1. Flowchart of the methodology.
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complex natural environment and high biodiversity, the region is
regarded as the most important ecological barrier in Western
China. However, the regional ecosystem health is facing great
challenges from the rapid urban expansion with the implementa-
tion of the Western China Development Strategy. Therefore, the
urgent task for researchers and policymakers is to find a sustainable
development path.

For this reason, we attempted to explore the impact of urban
expansion on ecosystem health at the county scale in Southwest
China from a multi-perspective view. In detail, to clarify the asso-
ciations between urban expansion and ecosystem health under
different scenarios (i.e., population density, economic structure,
urban area size and geological environment), the 438 counties were
divided into the following types: small-sized cities (<100 person-
$km�2), medium-sized cities (100e500 person$km�2), large-sized
cities (500e1000 person$km�2), and mega-sized cities (>1000
person$km�2) based on the population density; small-scale cities
(<10 km2), medium-scale cities (10e50 km2), large-scale cities
(50e100 km2), and mega-scale cities (>100 km2) based on the
3

urban area size; other cities (a relatively balanced proportion),
service cities (secondary industry accounts for more than 50%) and
industrial cities (tertiary industry accounts for more than 50%)
based on the economic structure (Shi et al., 2019); non-karst cities,
small-scale karst cities (carbonate rock accounts for less than 30%),
medium-scale karst cities (carbonate rock accounts for 30%e60%),
and large-scale karst cities (carbonate rock accounts for more than
60%) based on the geological environment.

In this study, the 30-m land use/cover data was generated from
Landsat MSS/TM/ETM þ images, which was obtained from Re-
sources and Environmental Data Cloud Platform, Chinese Academy
of Sciences (http://www.resdc.cn/). The land use data had an
overall accuracy above 90%, and referring to the classification
standard of Peng et al. (2015), which was classified into seven
types: farmland, forest land, grass land, water body, wetland land,
urban land, unused land. The 1-km Nighttime light index derived
from the National Oceanic and Atmospheric Administration’s Na-
tional Centers for Environmental Information (https://ngdc.noaa.
gov/eog/download.html). The 250-m Normalized Difference

http://www.resdc.cn/
https://ngdc.noaa.gov/eog/download.html
https://ngdc.noaa.gov/eog/download.html


Fig. 2. Spatial distribution of the 438 districts and counties in this study. Note: SI is the proportion of secondary industry, and TI is the proportion of tertiary industry.
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Vegetation Index (NDVI) was acquired from the Geospatial Data
Cloud (http://www.gscloud.cn/). The geological data was derived
from the Institute of Geochemistry, Chinese Academy of Sciences
(http://www.gyig.ac.cn/). Daily temperature, precipitation, wind
speed, humidity, and sunshine durations of 260 national stations
4

were derived from Chinese Meteorological Data Sharing service
System (http://data.cma.cn/). The population density and economic
structure of 438 cities acquired from the Statistical Yearbook of
counties in China.

http://www.gscloud.cn/
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http://data.cma.cn/


Table 1
The coefficient of spatial neighboring effect on ecosystem services.

Farmland Forest land Grassland Water body

RC 0.3 0.8 0.7 0.8
SNECs 4 5 5 4
SNECd �2 4 3 3

Built-up land Unused land Wetland
RC 0.2 1.0 0.7
SNECs 3 3 5
SNECd �4 �2 4

Note: RC refers to resilience coefficient; SNECs refers to the spatial neighboring ef-
fect on the same type of land use; SNECd refers to the spatial neighboring effect on
the different type of land use.
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2.2. Ecosystem health assessment

In this study, the health level of regional ecosystem mainly
depends on the physical health of ecosystem itself and the supply
capability of ecosystem services (Costanza, 1992; Peng et al., 2015).
First, the physical health of ecosystems is usually quantified based
on the traditional Vigor-Organization-Resilience assessment
method, which reflects the health status of spatial entities. Second,
to ensure that human and natural ecosystem are coupled, the
supply capability of ecosystem services is integrated to the tradi-
tional ecosystem health assessment. It is known that human well-
being can actually be enhanced by improving ecosystem services
(Carpenter et al., 2009). Thus, when the ecosystem can maintain
the stability of its own structure and function and the supply of
ecosystem services can meet human demands, the regional
ecosystem is in a healthy level. The general formula could be
expressed as follows:

EHit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PHit � ESVit

p
(1)

PHit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oit � Vit � Rit

3
p

(2)

where EHit and PHit refer to the regional ecosystem health and the
physical health of ecosystem in the ith unit in year t; Oit, Vit, Rit and
ESVit donates ecosystem vigor, ecosystem organization, ecosystem
resilience and ecosystem services in the ith unit in year t, respec-
tively. Specifically, Oit, Vit, Rit and ESVit needs to be normalized to the
range of 0e1 before the assessment of ecosystem health. And urban
ecosystem health is divided into five levels based on the fixed
thresholds method: weak level (0e0.2), relatively weak level
(0.2e0.4), ordinary level (0.4e0.6), relatively well level (0.6e0.8),
and well level (0.8e1.0).

Ecosystem vigor is usually used to describe the metabolism and
primary productivity of ecosystems. According to previous studies,
NPP (net primary productivity) has widely been proven to be
effective in the primary productivity of ecosystems (Kang et al.,
2018). Thus, ecosystem vigor is assessed by using NPP in this
study, which is estimated by using the Carnegie-Ames-Stanford
Approach (CASA) (Potter et al., 1993).

Ecosystem organization characterizes the structural stability of
ecosystems and reflects the interactions between the components
of ecosystems, which are determined by landscape heterogeneity
and landscape connectivity (Peterson, 2002). In detail, landscape
heterogeneity can be quantified though the area-weighted mean
patch fractal dimension (AWMPFD) and the Shannon diversity in-
dex (SHDI). Landscape connectivity is quantified with landscape
contagion index (CONT) and landscape fragmentation index (FN).
However, except the connectivity of the entire landscape, land-
scape connectivity also depends on the connectivity of the impor-
tant ecological landscape, such as forest land and wetland.
Therefore, a series of landscape pattern index were selected and set
different weights to measure ecosystem organization, and the
detail formula was expressed as follows:

O¼0:35� LHþ0:35� LCþ0:3� IC
¼ 0:25� SHDIþ0:1�AWMPFDþ0:25� FN1 þ0:1�CONT1þ0:1� FN2 þ0:05�CONT2 þ0:1� FN3 þ0:05�CONT3

(3)

where O is the organization of regional ecosystem; LH, LC, and IC
refer to landscape heterogeneity, landscape connectivity of spatial
entities, and landscape connectivity of important ecological patch
(forest and wetland); AWMPFD is area-weighted mean patch fractal
dimension; SHDI is Shannon diversity index; FN1, FN2, and FN3 are
the fragmentation index of spatial entities, forest land, andwetland,
5

respectively; CONT1, CONT2, and CONT3 are the contagion index of
spatial entities, forest land, and wetland, respectively. All landscape
pattern index were calculated by using FRAGSTATAS 4.2.

Ecosystem resilience reflects the ability of ecosystems to
maintain its original functions and structures under the interfer-
ence of natural and human factors (Peng et al., 2015). Based on
previous studies, land use, to some extent, can reflects the infor-
mation of ecosystem resilience (Peng et al., 2017). Thus, the
ecosystem resilience of the study area is quantified through the
summation of area-weighted ecosystem resilience coefficients for
each land use types (Table 1). Specifically, the indicator for resil-
ience coefficient (RC) were acquired based on expert knowledge
and related references (He et al., 2019; Kang et al., 2018). The
specific calculation formula is as follows:

R¼
Xn
i¼1

Ai

At
� RCi (4)

where R is the resilience of regional ecosystem; At is the total area of
spatial entities; Ai is the area of land use type i; RCi is the resilience
coefficient of land use type i.

Ecosystem services refers to the ability of ecosystem to provide
goods and services for human society (Costanza et al., 1997). Pre-
vious studies have indicated that the quantification of ecosystem
services needed to be considered from two aspects: the ecosystem
service value of spatial entities and the spatial neighboring of land
use types (Kang et al., 2018). First, the ecosystem service value of
spatial entities was generally quantified based on the equivalent
factor method (Costanza, 1992). Referring to the revised ecosystem
services assessment model Xie et al. (2015) for different land use
types in China, the ecosystem service values of study area was
obtained. Second, the services provision of specific ecosystem will
be affected by the ecosystems of the neighboring area due to
ecosystem services flow (Bagstad et al., 2013). In this study, the
spatial neighboring coefficients of land use type effect on
ecosystem services is calculated through the coefficient matrix
according to expert score (Table 1). In summary, the ecosystem
services of in a specific area are affected by their land use types and
land use types of their neighboring area. The specific calculation
formula is as follows:

ESV ¼ð
X

Aj �VCjÞ � ð1þ
Xm
i¼1

SNECi
100

Þ (5)

where ESV is the ecosystem services total values; Aj and VCj are the
area and value coefficient of land use types j; SNEC is the sum of
spatial neighboring coefficient of the four adjoining pixels on the
ecosystem services of pixel i; m is the number of pixels in the
assessing units.
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2.3. Measuring urban expansion

In this study, based on pattern-process analysis and spatial-
temporal interdependences (Liu et al., 2010), the characteristics of
urban expansion are mainly considered from three aspects: the
scale and intensity of urban expansion (temporal process), urban
growth modes (spatial process), and urban forms (urban landscape
pattern). First, the scale and intensity of urban expansion was
quantified through two index: overall urban expansion area (OEA)
and annual urban expansion rate (AER) (Dou and Kang, 2019). OEA
measures the changes of urban land areas, which reflects the scale
of urban expansion over different periods. AER reflects the intensity
of urban expansion and has been proved to be effective for
comparing the urban expansion of various cities sizes in the same
period. In addition, the modes of urban growth over different pe-
riods is identified by using landscape expansion index (LEI), which
reflects the relationship between new urban patches and existing
urban patches (Xu et al., 2019). Referring to the research of Liu et al.
(2010), the modes of urban growth can be divided into three types,
namely, outlying type (LEI ¼ 0), edge-expansion type (0<LEI�50),
and infilling type (50<LEI�100). Meanwhile, we also adopted the
mean expansion index (MEI) and the area-weight mean expansion
index (AWMEI) to characterize the aggregate degree and expansion
degree of new urban patches as a whole, respectively (Liu et al.,
2010). Finally, the composition and spatial pattern of urban land-
scape were characterized mainly through the landscape metric,
which has been proven to be effective for representing urban forms
(Peng et al., 2015; Shi et al., 2019). In this study, seven landscape
pattern indices were chosen to represent urban forms, including
the total urban area (TUA), percentage of like adjacencies (PLADJ),
largest patch index (LPI), number of patches (NP), landscape shape
index (LSI), percentage of landscape (PLAND), and patch cohesion
index (COHESION). The selection of these metrics is mainly
considered from two aspects: they have been widely used to
characterize irregularity, sprawl, and the aggregation of urban
forms (Wang et al., 2018). On the other hand, in order to facilitate
comparison with other studies. Seven landscape metrics was
calculated for each districts and counties using FRAGSTATAS 4.2.
The specific formula and description of urban expansion indicators
are shown in Table 2.
Table 2
Description of urban expansion indicators.

Indicators Formula

The scale and intensity of
urban expansion

Overall urban expansion area
(OEA)

OEA ¼ Uend � Ustart

Annual urban expansion rate
(AER) AER ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffi
Uend

Ustart

t

r
Þ� 100%�

Themodes of urban growth The landscape expansion index
(LEI)

LEI ¼ Ucom

Ubuf
� 100%

The mean expansion index
(MEI)

MEI ¼ PN
i¼1

LEIi
N

The area-weight mean
expansion index (AWMEI)

AWMEI ¼ PN
i¼1LEIi � ðai

A
Þ

The urban landscape
metrics

Total urban area (TUA) CA ¼ Pn
j¼1aijð1 =10000Þ

Number of patches (NP) NP ¼ n
Largest patch index (LPI)

LPI ¼
maxijðaijÞ

CA
ð100Þ

Landscape shape index (LSI)
LSI ¼ 0:25

Pm
k¼1e

*
ikffiffiffiffiffiffi

CA
p

Percentage of like adjacencies
(PLADJ) PLADJ ¼ ð

Pm
i¼1giiPm

i¼1
Pn

k¼1gik
Þð1

Patch cohesion index
(COHESION)

COHESION ¼ ð1 �Pm
i¼1

Pm
j¼1p

*
ijPm

i¼�1
Pm

j¼1p
*
ij

ffiffiffiffiffi
a*ij

q Þð1� 1p

Percentage of landscape
(PLAND)

PLAND ¼ a
A
ð100Þ

6

2.4. Econometric model

In this study, the relationship between urban expansion and
ecosystem health was quantified based on the panel data model.
Compared with the traditional statistic models, the panel data
model has the following three main advantages. First, the panel
data model has a high ability in controlling individual heteroge-
neity, reducing multicollinearity effect, and increasing the degrees
of freedom (Shi et al., 2019). Second, the panel data model can solve
the problem of insufficient sample size by considering more data
points. Third, the panel data model can correctly explain the rela-
tionship between variables based on different research objectives
(Chen et al., 2011).

In detail, urban landscape metrics were considered to analysis
the associations between urban expansion and ecosystem health
based on the following two reasons: 1. Those metrics have been
proven to be effective for quantifying and characterizing various
aspects (i.e., sprawl, irregularity, and aggregation) of urban land-
scape; 2. Landscape metrics could bridge between land-use pattern
and governing process, improve our understanding of the ecolog-
ical effects on urban expansion, and facilitate the characterization
of heterogeneous urban landscape (Peng et al., 2015; Xia et al.,
2019). Besides, the ecosystem health may also be impacted by
other factors which are directly or indirectly related to urban
expansion. Thus, based on previous studies (Shi et al., 2019), the
Night light and NDVI were used to control the correlation analysis
for better understanding the effects of urban expansion on
ecosystem health from amulti-perspective view (Fig. S1). The Night
light can effectively reflects the intensity of human activities and
has been used as the most significant variable driving urban
expansion. Meanwhile, due to the data scarcity, the Night light data
from 2015 was replaced by the data from 2013. The NDVI can
maintains the structure and function of ecosystems and guarantees
the supply of ecosystem services tomeet human demands, which is
applied to analysis the effect of natural environment on ecosystem
health associated with urban expansion.

Therefore, based on the seven landscape metrics and two con-
trol variable, we explored the associations between urban expan-
sion and ecosystem health from amulti-perspective approach. Note
that there are two points that need to be focused before the
Description

Ustart and Uend are the urban area of the start time and the urban area of
the end time, respectively

1
t is the time span of the period in years.

Ucom is the length of common edge of the buffer zone; Ubuf is the
perimeter of the urban buffer zone
N is the total number of overall new patches

ai is the area of the new urban patch i; A is the total area of overall new
patches
aij is the area of patch ij.

N is the number of patches.
aij is the area of patch ij. CA is the total area of urban.

CA is the total area of urban. eik* is the total length of edge in landscape
between i and k.

00Þ gii is the number of like adjacencies between pixel of i. gij is the number
of adjacencies between class i and k.

ffiffiffi
z
Þ�1ð100Þ

Pij* is the perimeter of patch ij. aij* is the area of patch ij in terms of
number of cells. Z is total number of cells.

a is the total area of urban. A is the total area of landscape.
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implementation of the panel data model. First, in order to avoid the
influence of nonstationarity and heteroscedasticity, all variables
should be processed through natural logarithm transformation (Shi
et al., 2019). Second, the validity of the panel data model need to be
confirmed though the panel root unit test and panel cointegration
test. The panel data model was formula as follows:

EHit ¼ai þ b1CAit þb2NPit þb3PLANDit þ b4EDit þ b5LPIit
þb6LSIit þ b7PLADJit þ b8COHESIONit þ b9GDPit þ b10NDVIit þ εit

(11)

where EHit is ecosystem health of cities i in year t; a is the intercepts
of all individuals; b1-b10 refers to regression parameters for each
explanatory variable; and Ɛ is the random error.

3. Results and discussion

3.1. Spatial pattern and change of ecosystem health

3.1.1. Change of ecosystem health indicators
In this study, in order to clarify the overall change trend of each

indicator and its contribution to urban ecosystem health, the
average values of all indicators in Southwest China were calculated
and compared (Fig. 3). The results showed that the change of
ecosystem services were similar to ecosystem health, preforming a
change trend of ascending firstly and then descending, with a peak
in 2005. It was suggested that ecosystem services played a key role
in urban ecosystem health, which was in accordance with previous
studies (He et al., 2019; Peng et al., 2015). The other indicators
varied differently; the highest values of ecosystem resilience and
ecosystem vigor were in 2005, while the peak for ecosystem or-
ganization occurred in 1995. By contrast, the lowest value of all the
indicators occurred in 2010 and 2015, indicating that the status of
regional ecosystem health was gradually deteriorating after 2005.
The reason for the improvement of ecosystem health before 2005
may be attributed to the implementation of a series of ecological
projects (i.e., Natural Forest Protection Project and The Grain for
Green Program), which was contributed to increase the ecosystem
vigor and improve the supply of ecosystem services (Wang et al.,
2019). Meanwhile, although urbanization had continued, there
had been no significant changes in the urban landscape heteroge-
neity and connectivity in Southwest China throughout this period,
which was beneficial to the ecosystem organization to maintain a
stable state (Kang et al., 2018). However, the reason for the dete-
rioration of ecosystem health after 2005 may be related to the in-
crease in the scale and intensity of urban expansion. Consistent
with our studies, Li and Li. (2019) found that the urban sprawl in
Southwest China and Yangtze River Delta region was the most
Fig. 3. Average value change of each indicator used in the assessment of
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severe during 2006e2014, which would directly lead to the decline
in ecosystem services and ecosystem resilience, and the low
ecosystem organization due to the increase of landscape diversity
and fragmentation. Therefore, the scale and intensity of urban
expansion is an important factor affecting urban ecosystem health.

3.1.2. Change of ecosystem health
As shown in Fig. 4 and Table 3, therewere significance difference

in the spatial distribution and change trend of ecosystem health
among the 438 counties. In terms of the spatial distribution of
ecosystem health, counties with a well or relatively well health
mainly distributed in the western mountainous areas with high
vegetation coverage and ecological integrity, which was consistent
with Kang et al. (2018). These areas were not only important
ecological barrier of the Yangtze River Basin in China but also a
restricted development area in China referring to Major Function-
Oriented Zone Planning (Peng and Wang, 2019). In contrast,
counties with aweak or relativelyweak healthmainly concentrated
in Sichuan Basin and metropolitan areas with high urbanization
and industrial development. Peng et al. (2015) indicated that rapid
and large-scale urban expansion had significantly changed the land
use/cover, and a large number of ecological land had been con-
verted into farmland and construction land, which had altered the
structure and function of regional ecosystem to some extent,
thereby, led to the deterioration of ecosystem health. Meanwhile,
counties with ordinary health were mainly concentrated in the
Yunnan-Guizhou Plateau areas with various ecosystem types and
relatively slow urbanization. The ecosystem health of these areas
are more sensitive to human activities (especially farmland recla-
mation and urban expansion) than other areas, due to the wide-
spread distribution of karst landscapes and fragile natural
environment (Wang et al., 2019). In general, we found that
ecosystem health exhibited different spatial pattern for counties
with different population density, economic structure, urban area
size, and geological environment in Southwest China. In addition,
the number of counties with relatively weak level accounted for the
largest proportion form 1995 to 2015 (He et al., 2019). Meanwhile,
the number and area proportion of counties above the ordinary
health level (well health and relatively well health) showed an
ascending trend during from 1995 to 2005 and then decrease from
2005 to 2015, while the total number and area proportion of
counties below the ordinary health level (weak health and rela-
tively weak health) showed decreased from 1995 to 2005 and
increased from 2005 to 2015. The resulted indicated that the
deterioration of urban ecosystem health within Southwestern
China mainly occurred between 2010 and 2015, which was may be
attributed to the increase in the scale and intensity of urban
expansion. He et al. (2019) indicated that urbanization rate
urban ecosystem health within Southwest region during 1995e2015.



Fig. 4. Level of urban ecosystem health in all the assessed units from 1995 to 2015.

Table 3
Number of unit assessed and their area ratios in relation to urban ecosystem health levels.

Level 1995 2000 2005 2010 2015

Weak 70 (2.21%) 61 (2.22%) 57 (2.01%) 75 (2.65%) 77 (2.74%)
Relatively weak 158 (18.39%) 148 (16.86%) 145 (16.60%) 145 (18.07%) 140 (18.08%)
Ordinary 119 (25.94%) 125 (24.30%) 128 (23.28%) 125 (25.73%) 123 (24.89%)
Relatively well 68 (22.43%) 79 (20.55%) 83 (20.46%) 71 (22.33%) 75 (21.61%)
Well 23 (31.03%) 25 (36.07%) 25 (37.65%) 22 (31.22%) 23 (32.68%)
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dominated the regional differences of ecosystem health in South-
west China, explaining 28.8% of the health variation.

3.2. Spatial pattern and change of urban expansion

3.2.1. Change of urban expansion intensity
In the period of 1995e2015, the urban area in Southwestern

China increased continuously and rapidly (Fig. 5aeb). The urban-
ized area for the entire region increased from 2441.98 km2 (3.98% of
the total area) in 1995 to 9710.43 km2 (8.53% of the total area) in
2015, with an average annual expansion percent of 6.84%, while the
China average between 1995 and 2015 was about 4.37%, according
to Dou and Kuang (2019). In terms of the urban expansion area, the
total area of urban expansion during 2010e2015 was the largest,
reaching 3224.70 km2. The area of urban expansion in the other
three periods (1995e2000, 2000e2005, and 2005e2010) was
319.18 km2, 640.64 km2, and 2543.93 km2, respectively (Fig. 5c). In
terms of the annual expansion rate, urban land in the entire region
during 2005e2010 increased most rapidly, with an annual expan-
sion rate of 11.81%. The annual urban expansion rate in the other
three periods (1995e2000, 2000e2005, and 2010e2015) was
2.49%, 4.26%, and 9.05%, respectively. Meanwhile, we also found
that the areas with the largest scale and speed of urban expansion
in Southwest China were concentrated in large-cities (i.e.,
Chongqing and Chengdu), which was consistent with Li and Li.’s
(2019) findings. The results further indicated that the degree of
urban expansion was correlated with the city size.

3.2.2. Change of urban growth modes
The dramatic changes in the urban landscape have been

observed during 1995e2015, while the urban landscape showed
different expansion patterns in four periods. As is shown Fig. 6, the
domination types of urban growth has gradually changed from
edge-expansion to outlying during 1995e2015, which means that
Fig. 5. Distribution of urban expansion in
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the spatial form of urban landscape has transformed from compact
to scatter. In detail, in the period of 1995e2005, the edge-
expansion was the domination types of urban growth in terms of
patch proportion and area proportion, indicating that the urban
form for the entire regionwas compact in this period (Fig. 6 b1-b2).
In the period of 2005e2010, the area and patch proportion of
outlying-type and infilling-type demonstrated an ascending trend,
especially, the proportion of outlying patches increased to 40.01%.
In the meantime, edge-expansion type experienced a significant
decline in patch (83.26%) and area (47.22%), but it remained the
main growth type. In the last period (2010e2015), edge-expansion
and infilling showed a significant decline in patch and area,
whereas the area proportion and patch proportion of outlying-type
increased to 53.89% and 73.34%, respectively. This change indicated
that the main types of urban growth has changed from edge-
expansion to outlying and the urban form increasing dispersed,
which was consistent with Liu et al. (2010). Furthermore, as is
shown Fig. 6-b3, the changes trend of MEI and AWMEI also indi-
cated that the urban form tended to scatted from 1995 to 2015. In
detail, MEI fluctuated slightly (range from 46.01 to 48.74) in the
period of 1995e2010, then significantly declined from 48.74 in
2005e2010 to 9.51 in 2010e2015. In contrast, AWMEI showed a
gradual downward trend, and the value of the four periods was
24.25, 23.95, 22.19, and 11.12, respectively. Meanwhile, we also
found that the edge-expansion was the domination types of cities
(i.e., Chengdu) with relatively flat terrain and urban form tended to
be compact, while the mountain cities (i.e., Guiyang) were mainly
outlying-expansion type and urban form was relatively scattered
(Fig. 6 a1-a4). The results indicated that the urban growth mode
was related to the local topography. For example, Peng and Wang
(2019) indicated that the topography had a long-term restraining
effect on the urban expansion. Therefore, the topography was also
taken into account when exploring the impact of geological envi-
ronmental on the urban expansion-ecosystem health relationships.
different cities during 1995e2015.



Fig. 6. Spatial distribution of three urban growth types in the four periods (a1-a4). Percentages of growth area and number of patches for the three urban types (b1). MEI and
AWMEI of newly grown urban patches in the four periods (b2-b3).
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3.2.3. Change of urban landscape metrics
Due to the acceleration of urbanization process from 1995 to

2015, the form of urban in Southwestern China become more and
more complex (Table 4). In terms of the scale and sprawl degree of
urban patches, the average TUA values of the entire region has
rapidly increased from5.01 km2 in 1995 to 18.84 km2 in 2015. It was
remarkable that the maximum TUA values have increased from
10
141.09 km2 in 1995 to 226.59 km2 in 2015. Meanwhile, we also
found that the maximum PLAND values and the mean LPI values
increased by 26.22% and 99.04%, from 1995 to 2015. On one hand,
these results indicated that the scale and proportion of urban land
in Southwest China has significantly increased, and the expansion
of big cities was the main trend (Peng et al., 2017; Li and Li, 2019).
On the other hand, these results also showed that edge-expansion



Table 4
Statistics of independent variables at the regional scale.

Year STA TUA (km2) PLAND (%) NP LPI (%) LSI PLADJ (%) COHESION NSL (DN) NDVI

1995 mean 4.68 1.28 3.73 1.04 3.42 91.29 94.94 1.24 0.71
min 0.36 0.00 1.00 0.00 0.01 0.01 0.00 0.00 0.26
max 54.11 69.22 51.00 69.22 16.17 98.46 99.87 38.44 0.83
std 7.72 5.92 5.33 5.34 2.28 13.91 14.07 1.95 0.06

2000 mean 5.66 1.39 4.47 0.01 3.76 92.067 95.89 2.56 0.71
min 0.36 0.00 1.00 0.00 0.01 0.01 0.00 0.03 0.29
max 62.75 70.71 50.00 70.72 16.18 98.21 99.88 42.35 0.82
std 8.45 6.19 5.78 5.65 2.15 11.61 11.65 2.41 0.06

2005 mean 6.97 1.69 5.38 1.39 4.14 92.40 96.38 3.89 0.75
min 0.36 0.00 1.00 0.00 0.01 0.01 0.00 0.04 0.32
max 90.34 73.00 52.00 70.75 16.46 97.98 99.91 46.01 0.85
std 10.55 7.32 6.61 6.75 2.34 9.79 9.67 3.18 0.06

2010 mean 12.18 2.39 13.22 1.88 5.45 93.28 97.01 5.34 0.75
min 14.31 0.00 1.00 0.00 0.01 0.01 0.00 0.08 0.39
max 122.57 86.96 265.00 86.51 41.36 98.54 99.96 52.41 0.85
std 16.50 9.14 .17.04 8.70 3.22 6.82 6.73 6.12 0.06

2015 mean 18.84 3.03 28.25 2.07 7.60 93.15 97.14 9.43 0.79
min 19.89 0.00 1.00 0.00 0.01 0.01 0.00 0.12 0.39
max 226.59 87.34 293.00 86.90 40.18 98.53 99.96 56.81 0.89
std 21.98 9.57 25.07 8.72 3.52 5.01 4.87 6.33 0.07
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and infilling growth, not outlying growth, were the dominant types
of urban expansion in the period of 1995e2015. In terms of the
aggregation degree of urban patches, the average COHESION and
the average PLADJ showed a slight upward trend during
1995e2015, indicating that the urban patches were far away from
each other and become less compacted. Specifically, the average
PLADJ increased from 91.30 in 1995 to 93.15 in 2015, and the
average COHESION increased from 94.94 in 1995 to 97.14 in 2015. In
terms of the irregularity of urban form, the NP for urban landscape
performed a rapid growth trend. In detail, the mean NP increased
from 3.73 in 1995 to 28.26 in 2015, increased about 7.58 times,
indicating that the spatial growth of urban landscape becomemore
and more complicated and fragmented. Meanwhile, the mean LSI
values also showed an ascending trend form 3.43 in 1995 to 7.60 in
2015, suggesting that the spatial heterogeneity of urban landscapes
gradually increased due to the rapid urban expansion.
3.3. Correlations between urban expansion and ecosystem health

In order to eliminate the spurious regression caused by non-
stationary data, panel cointegration and panel unit root tests
needed to be performed to verify the feasibility of model before
regression (Shi et al., 2019). As shown Table S1eS14, all variables
were stationary and cointegrated with each other during the study
period. Therefore, based on the above results, we were able to
construct a panel model to explore the relationship between urban
expansion and ecosystem health form a multi-perspective view. As
shown in Table 5, the correlation coefficient (R2) of the panel model
is higher than 0.79, and the Prob (F-statistic) value is lower than
0.001, indicating that the model has a relatively high goodness of fit
Table 5
The relationship between urban expansion and ecosystem health for the 438
selected cities (at the regional scale).

Independent variable Coefficient Independent variable Coefficient

TUA �0.509*** PLADJ �0.807**
PLAND �0.491*** Night light �0.078***
NP 0.025 NDVI 2.325***
LPI �0.045** Adjusted R2 0.799
LSI �0.148*** F-statistic 847.450
COHESION 1.563 Prob (F-statistic) 0.000

Note: Significant at * 10% level, ** 5% level, *** 1% level.
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and can accurately explain the relationship between urban
expansion and ecosystem health.

Table 5 showed that most landscape metrics had a significant
impact on urban ecosystem health. Specifically, the TUA was found
to exert a significantly negatively correlated with ecosystem health
in Southwest China. Thanks to the implementation of the Western
China Development strategy, continuous expansion of urban land
not only caused the change of urban structure but also the loss of
ecological land, which directly resulting in the increase of land-
scape fragmentation and the decrease of ecosystem function, and
thereby affecting the regional ecosystem health (He et al., 2019; Luo
et al., 2019; Li and Li, 2019). Meanwhile, urban expansion is often
accompanied by the migration of a large number of people from
rural areas to cities (Peng et al., 2016). Due to lack of good public
service systems, the increase of population density in urban areas
might cause a series of eco-environment problems (i.e., air pollu-
tion, soil erosion, and green space degradation), which undoubt-
edly hinder the sustainable development of city (Xia et al., 2019;
Song et al., 2020). In addition, the LPI and LSI had a significant
negative impact on ecosystem health, indicating that a highly
fragmented and complex urban form was not conducive to the
health and sustainable development of urban ecosystem. Previous
studies had indicated that with the irregularity of urban land
increased, the expansion of infrastructure (i.e., road network)
gradually become the most important factor affecting regional
ecological environment (Shi et al., 2019; Tao et al., 2020). For
example, Mo et al. (2017) found that road networks affected the
spatial structure of urban landscapes, leading to the increase of
regional ecological risk and a broader impact on the regional
ecosystem health. Furthermore, the PLADJ was significantly nega-
tively correlated with ecosystem health, suggesting that an aggre-
gation urban growth mode, to some extent, could help to improve
the regional ecosystem health. An extensive study has demon-
strated that the decrease of landscape connectivity would hinder
the spread of material and energy flow and change the regional
material, energy and ecological process, resulting in the deterio-
ration of regional eco-environment (Kang et al., 2018; Peng et al.,
2016). Of the control variables, there was significant positive cor-
relation between the NDVI and ecosystem health. The more the
NDVI, the more vegetation coverage. The increase of vegetation
coverage can improve the ability of ecosystems to maintain its own
structure, function, and resilience to external disturb (Peng et al.,
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2017). However, the night light had a significant negative impact on
ecosystem health. The Night light reflects the intensity of human
activity to some extent, the more human activity will increase the
demand for construction land and decrease the supply of
ecosystem services, which is not benefit for the sustainable
development of ecosystems.
3.3.1. Effects of the urban area size on the relationship between
urban expansion and ecosystem health

As shown in Table 6, the correlation coefficient (R2) for different
urban area size scenarios ranging from 0.74 to 0.95, and the all Prob
(F-statistic) values are lower than 0.001, indicating that the urban
size affected the associations between urban expansion and
ecosystem health to some extent (Li and Li, 2019). Four main
findings were found in this study. First, the TUA was significantly
negatively correlated with ecosystem health in all of the cities
except for mega-scale cities, and the impact of the urban scale on
ecosystem health was the most significant in small-scale cities,
followed by medium-scale cities and large-scale cities. The results
indicated that the environmental problems resulting from urbani-
zation may be phasic, which was consistent with previous studies
(Kang et al., 2018; Peng et al., 2017). For example, Peng et al. (2016)
found that compared to highly developed urban zones, lowly and
moderately developed urban zones had an obvious negative
ecological effect on NPP. Note that there was significant positive
association between urban expansion and ecosystem health in
mega-scale cities, which may be attributed to the impact of local
eco-environment management and urban planning. Many studies
had indicated that urban land in mega-scale cities had experienced
more greening than other size cities through urban land use
management, which improved quality of life and urban sustain-
ability within cities (Dou and Kuang. 2019; Peng et al., 2016). Sec-
ond, the LSI except for small-scale cities was significantly
negatively correlated with ecosystem in various types of cities,
indicating that the impact of urban form irregularity on ecosystem
health was relatively significant in the medium-scale, large-scale
and mega-scale cities. Previous studies had found that during the
rapid urbanization process, the appearance of more planer, irreg-
ular urban patches will directly lead to the low ecosystem organi-
zation due to the increase of landscape diversity and fragmentation
(He et al., 2019; Liao et al., 2018; Kang et al., 2018). By contrast, it
was not significant correlation between the LSI and ecosystem
health for small-scale cities, which may be due to small cities have
small areas and relatively good ecological environment so that they
are insensitive to urban irregularity (Peng et al., 2015). Third,
compared to small-scale and medium-scale cities, the impacts of
the compact of urban form (PLADJ) on ecosystem health was more
Table 6
The relationship between urban expansion and ecosystem health with different urban a

Independent variable Coefficient
(UA<10 km2)

Coefficient (10 km2<UA<50

TUA �0.449*** �0.390**
PLAND �0.547* �0.285*
NP �0.028** �0.019*
LPI �0.052* �0.213*
LSI �0.250 �0.131**
PLADJ �2.047** �1.293*
COHESION �0.147* 2.690
Night light �0.113* �0.084*
NDVI 0.562** 3.604**
Adjusted R2 0.911 0.741
F-statistic 852.230 323.400
Prob (F-statistic) 0.000 0.000

Note: Significant at * 10% level, ** 5% level, *** 1% level, UA represents the urban area s
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significant in mega-scale cities, which reason may be that
compared with other types of cities, mega-scale cities are in the
rapid development stage of urbanization, and urban forms is more
scattered and complex, which reduces the landscape patches con-
nectivity and increases the potential ecological risk to some extent.
For example, Shi et al. (2019) demonstrated that a continuous and
aggregated urban pattern was conducive to improving the effi-
ciency of urban public service systems and reducing air pollution.
Fourth, the NDVI had a significant benefit for ecosystem health
within various types of cities, indicating that increasing vegetation
coverage could improve the vigor, resilience, and function of eco-
systems (Luo et al., 2019; Song et al., 2020). However, the impact of
the Night light on ecosystem health in the small-scale and
medium-scale cities were more significant than that of large-scale
and mega-scale cities, which reason may be that the economic
development of small-sized and medium-sized cities mainly
depend on resource exploitation and energy consumption (Li and
Li, 2019).
3.3.2. Effects of the population density on the relationship between
urban expansion and ecosystem health

As shown in Table 7, all models are statistically significant at
Prob <0.001 and have adjusted R2 values ranging from 0.66 to 0.86,
which indicated that the impacts of urban expansion on ecosystem
health varied between cities with different population density.
Many studies have demonstrated that the urban population density
was the most important factor driving urban sprawl, to some
extent, which also resulted in the imbalance of ecosystem health
between different regions (Xia et al., 2019; He et al., 2019). Four
main findings emerged for population density effects on the urban
expansion-ecosystem health relationship. First, the TUA was found
to exert a significant negative impact on ecosystem health within
all of the cities except for small-sized cities, and the impacts of
urban expansion on ecosystem health was more significant with
the increase of population density. Undoubtedly, an increase in
population density inevitably resulted in increases in the housing
demand, transportation and energy consumption, thereby, result-
ing in an increase in eco-environment pressure and decline in
ecological function (Shi et al., 2019; Song et al., 2020). By contrast,
the TUA had a significant positive impact on ecosystem health for
small-sized cities, which may be due to the relatively small popu-
lation density, the urban scale of small-sized cities might be more
conducive to maintain the vigor of ecosystems and guarantee the
sustainable supply of ecosystem services (Li and Li., 2019; Dou and
Kuang. 2019). For instance, Peng et al. (2015) found that the urban
population increased several times without a degradation of
ecosystem health at the early stage of urbanization in Shenzhen, on
rea size.

km2) Coefficient (50 km2<UA<100 km2) Coefficient (100 km2<UA

�0.321** 0.251*
�1.169* �0.794
�0.081 0.535
�0.244* �0.151
�2.836** �1.535*
26.810 �5.868***
8.429 32.782
�0.044* �0.012*
3.499* 1.744**
0.839 0.954
81.630 18.450
0.000 0.000

ize.



Table 7
The relationship between urban expansion and ecosystem health under different population density.

Independent variable Coefficient (PD < 100) Coefficient (100 <PD < 500) Coefficient (500 <PD < 1000) Coefficient (1000 <PD)

TUA 0.468 �0.519** �0.575* �0.841**
PLAND �0.512* �0.428*** �0.446** 0.255
NP 0.031 �0.017 0.055 0.139
LPI �0.063* �0.105*** �0.011 �0.612
LSI 0.184 �0.012* �0.102** �0.823*
PLADJ �0.288* �0.412* �2.281** �3.953
COHESION 0.211 1.416 �1.125** 3.682**
Night light �0.011 �0.028*** �0.066* �0.204**
NDVI 0.056** 0.908** 0.687** 0.629*
Adjusted R2 0.863 0.822 0.781 0.662
F-statistic 446.350 590.310 96.250 33.700
Prob (F-statistic) 0.000 0.000 0.000 0.000

Note: Significant at * 10% level, ** 5% level, *** 1% level, PD represents the population density (person/km2).
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the contrary, which brought a win-win effect for sustainable
development. These results suggested that regulation of population
is the preferred means of realizing the coordinated development of
urban expansion and ecosystem health. Second, the impact of ur-
ban form complex (NP, LPI, and LSI) on ecosystem health weremore
significant in the small-sized and medium-sized cities than of
large-sized andmega-sized cities. These results indicated that cities
with small population density and relatively regular urban form
were favorable to maintain the organization and self-operation of
ecosystems. On the contrary, cities with high population density
and irregular urban form would reduce the connectivity between
landscapes and the supply capacity of ecosystem services (Peng
et al., 2015; Wang et al., 2019). For example, Tao et al. (2020)
found that the irregularity of urban form had a relatively stronger
impact on air pollution in small and medium cities, whereas urban
land use composition was the dominant factor influencing air
pollution in large cities. Third, the PLADJ was significantly nega-
tively associated with ecosystem health within all of the cities
except for mega-sized cities, indicating that a compact urban form
was benefit for maintaining the structure and function of
ecosystem and improving the quality of eco-environment (Peng
et al., 2015; Kang et al., 2018). Many studies indicated that with
the migration increase of rural-urban population in the process of
urbanization, the intensity of urban expansion would further
strength for meeting the people’s demands of work and live,
thereby, resulting in the increase of landscape fragmentation and
the loss of ecological land (Song et al., 2020; Liao et al., 2018). Note
that the COHESION was significantly positively associated with
ecosystem health in mega-sized cities, which may be attributed to
the changes in human life styles and the positive demand for urban
green space (Xia et al., 2019; Peng et al., 2016). For example, Shi
et al. (2019) indicated that due to the overcrowded traffic system,
people preferred to walk and use public transportation, which
reduced air pollution and improved the living environment quality.
Fourth, the NDVI was positively correlated with ecosystem health
in all of cities, whereas the Night light was negatively associated
with ecosystem health in all of cities except for small-sized cities.
On the hand, these results suggested that only when population
density reaches a certain scale, socioeconomic factors and natural
environment would had a significant impact on ecosystem health.
On the other hand, these results also indicated that the impact of
natural environment on ecosystem health was more significant
than socioeconomic when taking the population density into
consideration.
3.3.3. Effects of the economic structure on the relationship between
urban expansion and ecosystem health

As shown in Table 8, both the Prob (<0.001) values and adjusted
R2 (>0.75) indicated that the panel data model can effectively be
13
applied to analyze the relationship between urban expansion and
ecosystem health with different economic structure. Four main
findings emerged for economic structure effects on the urban
expansion-ecosystem health relationship. First, the TUA was
significantly negatively correlated with ecosystem health in the
industrial cities and other cities, rather than in the service cities.
Indicating that the impact of the proportion of tertiary industry on
urban expansion was relatively weaker than the proportion of
secondary industry, which was consistent with the results of pre-
vious studies (Xu et al., 2019; Li and Li., 2019). After all, the sepa-
ration between residence and work caused by industrial
manufacturing is more likely to lead to urban expansion, thus
optimizing the structure of industry is conducive to improve the
utilization effective of urban land (Shi et al., 2019; Yuan et al., 2019).
Meanwhile, the irregularity of urban forms (i.e., LSI and LPI) had a
negative impact on ecosystem health, which may be due to a
complex urban form often caused an increase in the use of trans-
portation land, thereby resulting in the increase of landscape
fragmentation and the decline of ecological function (Song et al.,
2020). For example, Xia et al. (2019) found that the highest car-
bon transitions were largely from the transformation from natural
components to artificial components, especially from cultivated
land to industrial and transportation land. In addition, the COHE-
SION was found to exhibit a significant positive impact on
ecosystem health, suggesting that an urban form with high
agglomeration may result in congested urban operations, in turn
leading to a decrease in ecosystem connectivity (Yuan et al., 2019).
Overall, urban forms had a more significant impact on ecosystem
health in industrial cities. Second, for the service cities, the urban
sprawl metric (i.e., TUA, NP, and LPI) were insignificant correlated
with ecosystem health, which may be attributed to the industry
structure and local government management (He et al., 2019).
These cities have many environment-friendly industries (i.e., high-
tech and light industries with high utilization efficiency), which not
need too much land resources and have less damage to the envi-
ronment. Using Lijiang as a case study, Peng et al. (2017) found that
the status of ecosystem health showed an increase trend by opti-
mizing the regional land use. Furthermore, the COHESION was
significantly negatively correlated with ecosystem health, indi-
cating that a compact urban form was benefit for maintaining the
structure and function of ecosystem and improving the quality of
eco-environment (Tao et al., 2020). Third, for other cities, all urban
irregularity and compactness metrics were significantly negatively
correlated with ecosystem health. On the hand, cities with the
highly complexity of urban form usually result in the increase of
transportation demand. On the other hand, cities with the highly
fragmentation of urban form would directly result in the low
ecosystem organization. Fourth, of the control variables, Night light
and NDVI were found to exert significant impact on ecosystem



Table 8
The relationship between urban expansion and ecosystem health under different economic structure.

Independent variable Coefficient (Others) Coefficient (The proportion of secondary industry >50%) Coefficient (The proportion of tertiary industry >50%)

TUA �0.501** �0.551*** �0.132
PLAND �0.509* �0.363** �0.707
NP �0.006* �0.057** 0.033
LPI 0.036 �0.187** 0.152
LSI �0.058* �0.046*** �0.015
PLADJ �0.025** �0.396 �3.578
COHESION �0.514* 0.793* �0.474***
Night light �0.056* �0.046*** �0.092*
NDVI 0.428** 0.653** 1.286***
Adjusted R2 0.923 0.918 0.755
F-statistic 1672.060 542.050 145.890
Prob (F-statistic) 0.000 0.000 0.000

Note: Significant at * 10% level, ** 5% level, *** 1% level.
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health within various types of cities. Note that from other cities to
second cities to industry cities, the impact of the natural environ-
ment gradually strength. In general, the urban expansion-
ecosystem health relationship changed gradually with various
economic structure.

3.3.4. Effects of the geological environment on the relationship
between urban expansion and ecosystem health

As shown in Table 9, the adjusted R2 and Prob-values indicated
that the geological environment could affected the associations
between urban expansion and ecosystem health to some extent.
Most studies have demonstrated that difference in geological
environment was also an important factor affecting the relation-
ships between urban expansion and ecosystem health (Wang et al.,
2019). The results showed that the relationships between urban
forms and ecosystem health between cities with different geolog-
ical environment existed significant differences. In terms of the
urban sprawl scale, the TUA and PLAND were found to exhibit a
significant negative impact on ecosystem health within all types of
cities, and the impact of urban sprawl metrics on ecosystem health
was more significant in the non-karst cities than the karst cities.
These results may be due to differences in the effects of topography
and human activity intensity on ecosystem health (He et al., 2019).
For non-karst cities, the urban scale was relatively large and
continuous due to it was mainly located in the basin area, and the
development of socio-economic further accelerated the intensity of
urban expansion, thereby resulting in the loss of ecological land
and the decline of ecosystem services (Xu et al., 2019). By contrast,
the topography had a long-term restraining effect on the urban
scale in the karst cities, and economic and technological conditions
were not good enough, leading to the impact of urban scale on
ecosystem health was relatively small (Han et al., 2020). For
Table 9
The relationship between urban expansion and ecosystem health under different geolog

Independent
variable

Coefficient (Non-karst
area)

Coefficient (The proportion of karst area
>30%)

Co
are

TUA �0.544*** �0.308** �0
PLAND �0.546* �0.201** �0
NP �0.064 �0.014** 0.0
LPI 0.543 �0.047** �0
LSI 0.102 �0.452*** �0
PLADJ �0.373** �2.276*** �3
COHESION 4.088 �0.581** �0
Night light �0.091*** �0.024* �0
NDVI 0.271** 0.309* 0.3
Adjusted R2 0.785 0.904 0.9
F-statistic 172.450 924.370 39
Prob (F-statistic) 0.000 0.000 0.0

Note: Significant at * 10% level, ** 5% level, *** 1% level.
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instance, Dou and Kuang. (2019) found that the impact of urban
expansion on green space in low altitude areas (below 500 m) was
more significant than high altitude areas (above 2000 m). In
addition, the significant negative correlations between the LSI and
ecosystem health was found in karst cities, rather than non-karst
cities. These results indicated that the ecological environmental
in karst area was more sensitive to the irregular of urban form,
which was consistent with previous studies (Peng andWang, 2019;
Shi et al., 2019). For example, Wang et al. (2019) indicated that karst
landscapes were more fragile than non-karst landscape due to the
unique geological setting and soil properties. The complex of urban
form usually lead to the increase of potential traffic demand, which
increases the number of patches, heterogeneity and decreased
landscape stability. Furthermore, the PLADJ had a significant
negative effect on ecosystem health with all types of cities, and the
impact of urban form compactness on ecosystem health was more
significant in the medium-scale and large-scale karst cities. The
reason may be that the landscape was relatively fragmented in the
high-proportion karst area (i.e., high percentage of rock outcrop
and large slope variation), a compact and continuous urban form
could improve the stability of ecosystem structure and maintain
the sustainable health of ecosystems. For instance, Hou and Gao
(2020) found that landscape fragmentation was more severe in
karst cities than non-karst cities, especially the most serious frag-
mentation areas was mainly distributed in the karst areas with
steeper slope. Furthermore, the NDVI and Night light were signif-
icant associated with ecosystem health within various types of
cities. Note that the impact of the NDVI on ecosystem health was
more significant in the karst cities than non-karst cities, which may
be related to the implementation of a series of ecological engi-
neering projects aimed at rocky desertification in karst areas (Wang
et al., 2019). For example, Liao et al. (2018) found that 74% of the
ical environment.

efficient (30%<The proportion of karst
a <60%)

Coefficient (The proportion of karst
area >60%)

.263* �0.165**

.379** �0.369*
31 0.003
.147** �0.072
.044** �0.195***
.186* �0.693***
.994*** 2.526
.021* �0.006**
16** 1.073***
05 0.943
2.810 911.530
00 0.000
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study area showed an increasing trend of ecosystem health through
the ecological restoration project, and the increase in karst areas
was more obvious than non-karst areas. Thus, improving the
effectiveness of ecological protection is conductive to achieve the
coordination between urban expansion and ecosystem health.

3.3.5. Limitation and future directions
In this study, there are several limitations that are worth

mentioning. First, the health of urban ecosystem was affected by a
series of urban form metrics (i.e., the size and shape of urban
patches), since only seven landscape metrics in this study were
chosen to assess the impacts of urban expansion on ecosystem
health, future studies should emphasize the selection and quanti-
fication of urban form metric to accurately describe the influence
mechanism of urban expansion-ecosystem health relationship.
Second, using coefficient matrix score measuring the spatial
neighboring effect on ecosystem services existed serious constrains
when considering the broad temporal and spatial scales. An
improvedmethod should be adopted to obtainmore accurate at the
pixel level in the following studies. Third, Although the panel data
model have been proven to be effective for evaluating the rela-
tionship between explanatory variables and the independent var-
iables (Chen et al., 2011), it is difficult to quantify the spatial
dependence and heterogeneity of the relationship between urban
expansion and ecosystem health. Thus, the relationship needs to be
further analyzed using spatial regressionmodels (i.e., the spatial lag
model, the geographically weighted regression model, and the
spatial Durbin model) in the following studies. Finally, the rela-
tionship between urban expansion and ecosystem health were
explored only at the county scale in this study, future studies need
to quantify and compare the impact of urban expansion on
ecosystem health form a multi-scale view (i.e., county, city, and
provincial scales).

4. Conclusions and policy implications

In recently years, exploring the impact of urban expansion on
ecosystem health has gradually become a hot topic. However,
analyzing the relationship between urban expansion and
ecosystem health from a multi-perspective view is relatively rare,
which limits the understanding of the urban expansion-ecosystem
health relationship when considering different scenarios. Thus,
taking 438 cities in Southwest China as the study area, this study
attempted to explore the impact of urban expansion on ecosystem
health from a multi-perspective view (population density, eco-
nomic structure, urban area size, and geological environment). The
results were as follows: First, regional ecosystem was relatively
health when urban expansion was slow and dominated by edge-
expansion type, but regional ecosystem was relatively weak when
urban expansion was rapid and dominated by outlying type. Sec-
ond, at the region scale, a regular and aggregated urban form had a
significant positive impact on ecosystem health. Third, the TUA
except for mega-sized cities had significant positive impact on
ecosystem health within all types of cities. Fourth, the relationship
between urban form and ecosystem health between cities with
various population size showed significant difference. A regular
urban form was benefit for ecosystem health at the medium-sized
and large-sized cities. Fifth, the scale and irregular of urban land
had a significant negative impact on ecosystem health within in-
dustry cities than the service cities, indicating that optimizing the
industry structure was conducive to improve the health of urban
ecosystem. Sixth, the significant negative correlations between the
LSI and ecosystem health was found in karst cities, rather than non-
karst cities, suggesting that the ecological environmental in karst
cities was more sensitive to the irregular of urban core than non-
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karst cities. These findings would help to further understand
which aspects of urban expansion affect ecosystem health under
different scenarios and could provide a scientific basis for formu-
lating reasonable urban planning. First, at the regional scale, policy-
maker should avoid excessively irregular and scattered urban
forms, since a complex and less aggregated urban forms could in-
crease the fragmentation of landscape and decrease the connec-
tivity of landscape, which ultimately lead to the decline of
ecosystem stability. Second, the TUA except for mega-scale cities
was significantly negatively correlated with ecosystem health with
all types of cities. Thus, policy-maker should control the scale of
urban expansion and optimize urban expansion mode for small-
scale, medium-scale, and large-scale cities, in order to maintain
the regional ecosystem health. Third, the urban planning should be
adjusted when taking different population density into consider-
ation. The results of our study proved that cities with small popu-
lation density and relatively regular urban formwere conductive to
maintain the organization and self-operation of ecosystems. On the
contrary, cities with high population density and irregular urban
form would reduce the connectivity between landscapes and the
supply capacity of ecosystem services. Fourth, it is necessary to
optimize the structure of industry for achieving the intensive uti-
lization of urban land and the sustainable health of ecosystems.
Because the irregular and fragmentation of urban forms had been
found to exert a significant negative impact on ecosystem health in
the industrial cities. Fifth, due to unique geological environment,
policy-maker should control the scale and number of urban core
and improve the effectiveness of ecological protection as much as
possible for karst cities.
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