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A B S T R A C T

Urbanization, especially land use pattern changes, has a great impact on natural flood events in a karst basin.
Quantitative simulations of the effects of urbanization on karst flood events and forecasts of future evolution
trends are difficult based on the current hydrological models. These models often require a large amount of data
when used in karst areas due to the complex model structure and model parameters. To overcome the limitations
of model applications, a physically based and fully distributed karst hydrological model, i.e., the improved Karst-
Liuxihe (IKL) model, was proposed in this study to simulate and forecast karst flood events under the influence of
urbanization. This IKL model was developed through the overall improvement of the Karst-Liuxihe (KL) model.
The main additions were the improved runoff generation algorithm and the underground river confluence
module. The karst flood simulation results of the IKL model were much better than those of the KL model: the
average values of the Nash–Sutcliffe coefficient, correlation coefficient, and coefficient of the water balance
increased by 23%, 23% and 26%, respectively, while the process relative error, flood peak flow relative error,
and flood peak flow time error decreased by 21%, 22%, and 3 h, respectively, which confirmed that the im-
provements to the model were effective and feasible. Therefore, this paper used the IKL model to simulate karst
flood events and annual runoff under the influence of urbanization based on 4 extreme land use scenarios. In
addition, the model effectively forecasted the future runoff in 2030, 2040, and 2050. The results indicated that
the critical proportion of urbanized area throughout the watershed area was 45%. When the urban proportion
exceeded 45%, waterlogging could occur in the study area.

1. Introduction

Human activities associated with urban development have had a
considerable effect on the climate and environment. In particular, the
development and utilization of land have caused dramatic changes in
the global environment over the past several decades (Rao, 2005). To
study the impacts of human activities on environmental changes, the
International Geosphere-Biosphere Program (IGBP) and International
Human Dimensions Programme (IHDP) proposed a research project
focused on land use/land cover change (LUCC) in 1994, and research
on LUCC has become popular (Turner et al., 1990; Meyer and Turner,
1994). Studies on the hydrological effects of urbanization, especially
LUCC, are necessary to identify the important impacts on floods and

water resources in karst watersheds (Frumkin, 2002; Trcek et al., 2006;
Zhu and Li, 2014; Bittner et al., 2018).

In general, the carrying capacity of the eco-environment in karst
areas is low, and the environmental effects of urbanization are promi-
nent. The LUCC during urbanization processes can greatly increase the
impermeable area and change the spatial and temporal patterns of the
surface runoff and water balance conditions (Yuan, 2002; Cornaton and
Perrochet, 2002; Hartmann et al., 2014; Bittner et al., 2018). Moreover,
karst landforms can change under the influence of LUCC and the hy-
drological process of rainfall infiltration. The main manifestations of
these changes are increases in the peak discharge and runoff volume, a
sharpened and steepened discharge hydrograph, reduced surface in-
filtration, and an increased likelihood of catastrophic flooding (Cao,
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2012; Lan, 2014; Hartmann et al., 2015). Therefore, it is critical to si-
mulate and forecast regional floods to reduce flood losses in karst ba-
sins.

This paper selected the Laolongdong karst watershed in Southwest
China as an example and conducted an impact analysis of urbanization
on flood events and annual runoff in a karst area. The Laolongdong
karst cave is a famous tourist attraction, and many tourists are attracted
by the cave’s reputation. In recent years, the research area has under-
gone rapid urbanization, marked increases in urban areas, and drastic
changes in land use patterns, which have greatly changed the natural
underlying surface conditions. The unreasonable urbanization-based
development plan has had a negative hydrological effect. This effect is
manifested in the dramatic increase in impermeable area, which results
in a decrease in seepage and frequent urban waterlogging. With the
increase in urbanization in the study area, several catastrophic floods
have occurred in recent years (Zhang, 2017). For example, Fairy Dong,
once a famous tourist attraction, was closed after repeated waterlogging
incidents. Therefore, it is necessary to simulate and evaluate the hy-
drological effects of urbanization and discuss how increases in the built-
up land area due to urbanization can lead to waterlogging disasters in
karst areas. A hydrological model could be a promising tool for studying
the impact of urbanization on karst flood events (Bittner et al., 2018;
Bhave et al., 2018).

The current commonly used hydrological models in karst areas
mainly focus on solving problems related to water resource manage-
ment or water environment assessments, and quantitative model re-
search on the hydrological effects of urbanization is lacking (Nikolaidis
et al., 2013; Hartmann et al., 2014, 2015; Li et al., 2019a, b). Quanti-
tative calculations of this effect using the currently available hydro-
logical models and accurate predictions of future hydrological evolu-
tionary trends are difficult (McMahon et al., 2008; Hartmann et al.,
2015; Sarrazin et al., 2018). Traditional hydrological models, such as
lumped models, have some shortcomings in applications in karst areas
due to their simple structure (Dewandel et al., 2003; Bittner et al.,
2018), and emphasis is placed on the input and output of the model
(Liedl et al., 2003). The karst hydrological processes in the middle are
often uncertain in these lumped models (Hartmann et al., 2015). Thus,
these traditional lumped hydrological models may not be applicable for
evaluating the effect of urbanization on flood events in karst areas
(Fleury et al., 2007; Geyer et al., 2008).

Distributed hydrological models have the potential to improve the
accuracy of karst flood simulations (Ambroise et al., 1996; Zhu and Li,
2014). In karst areas, the entire karst river basin can be divided into a
series of small karst sub-basins (Shuster and White, 1971; Birk et al.,
2005) to precisely describe the characteristics of the underlying surface
of the basin and the corresponding karst development. In addition, the
parameters of the distributed model must be calibrated by using his-
torical measured data with physical significance before they can be
used to verify the simulation effect, which makes the results of a dis-
tributed model more reliable. However, because distributed hydro-
logical models and their parameters are relatively complex (Hartmann
et al., 2014, 2015), the greatest challenge of most distributed models
used in karst areas is the need for a large amount of hydrogeological
data to build the models (Meng et al., 2009; Kraller et al., 2014).

In this study, we improved the physically based and fully distributed
Karst-Liuxihe (KL) model (Li et al.,2019a) and developed the improved
Karst-Liuxihe (IKL) model to simulate and forecast the effects of urba-
nization on karst flood events. The improvement was mainly reflected
in the runoff generation and confluence algorithms used in the model.
The simulation results of karst flood events based on both the KL and
IKL models were compared to verify the improvement effects of the KL
model. This study focused on the correlation between the built-up land
area and flood probability, and the IKL model was used to determine
the relationship between the proportion of built-up land area and the
flood disaster level in the study area. Four extreme land use scenarios
were adopted to quantitatively calculate and assess the influence of

urbanization on karst flood events and annual runoff. These extreme
scenarios were used to distinguish the contributions of different land
use types to annual runoff. The future annual runoff values in 2030,
2040, and 2050 under urban planning were then predicted.

2. Study area and data

The study area in this paper was the Laolongdong karst watershed
(LKW) in Chongqing, China. The watershed is located at
106.57–106.61°E and 29.47–29.58°N, and it has a drainage area of
13.1 km2. The LKW is a developed karst watershed that can effectively
represent the entire karst basin of Chongqing. The humid subtropical
monsoon climate leads to abundant rainfall in this area, and ground-
water recharge mainly comes from precipitation. The multiyear average
rainfall was 1080 mm, and the average temperature was 17.8 °C. The
bare karst landform in the basin is mainly composed of karst wasteland,
some of which has developed into rocky desertification areas. The
subsurface karst landform features the extensive development of un-
derground karst caves, crisscrossing karst fissures, water-bearing con-
duit systems, and the Laolongdong underground river. The drainage
map of the LKW is shown in Fig. 1.

2.1. Landform and hydrogeological characteristics

The main landforms of the LKW are low anticline-related hills and
intervening valleys. The terrain is high in the north and low in the
south, and the average elevation is 500 m. The core of the anticline was
subjected to intense karst erosion in the Quaternary, and the inner
strata of the basin are mainly carbonate rocks of the lower Triassic Jia
Ling Jiang Formation (T1j) and have a thickness of approximately

Fig. 1. Drainage map of the LKW (modified from Cao, 2012; Zhang, 2017).
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500–700 m. The anticlinal flanks are composed of carbonate rocks of
the middle Triassic Lei Kou Po Formation (T2l) and sandstone of the
Upper Triassic Xu Jia He Formation (T3xj). Quaternary sediments are
distributed sporadically in depressions and on mountainsides. The
cross-section of the underground river outlet and a longitudinal section
of the structural map of the LKW are shown in Fig. 2.

The anticlinal carbonate rocks are zonally distributed, the slope of
the strata in the core of the anticline is gentle, and longitudinal frac-
tures and rock fragmentation create favourable conditions for the de-
velopment of karst groundwater systems. A large fault zone has de-
veloped in the axis of the anticline, and the core of the anticline has
developed into a karst aquifer. The sandstones distributed zonally in the
eastern and western wings of the anticline form a relative aquiclude.
Together, these units constitute a closed and complete underground
river system, i.e., the Laolongdong karst underground river, which has a
length of 6 km. The river base flow, which is the amount of water in the
river channel below the water table, is approximately 50–80 L s−1.
Many vertical shafts and sinkholes are distributed in the core of the

anticline in a beaded pattern. Flows on the surface that form after
precipitation quickly enter the underground river through the sink-
holes; thus, there are no surface rivers in the basin. To better explore
the characteristics of the underground river in the study area, a total of
3 tracer tests (Lan, 2014) demonstrated that there was a good hydraulic
connection between the sinkholes and the underground river in the
LKW, and the karst underground river is likely located in a karst aquifer
with large conduits and a flow rate of 1.35 m s−1.

2.2. Property data for the basin

The property data for the LKW included high-resolution DEM data,
soil and land use type data, and rainfall and flood process data. The
original spatial resolutions of the DEM, soil type, and land use data
were 90 m × 90 m, and the resolution was resampled to 30 m × 30 m
to perform a detailed simulation of the effect of urbanization on karst
flood events using the IKL model. These 3 types of property data were
downloaded from the Internet at no cost. The DEM data were from

a. Cross-section of the structural map of the catchment outlet: 1=soil layer, 2=T3xj, 3=T2l, 
4=T1j, 5=karst cave, 6=karst fissures, 7=orientation of bedrock, 8=sandstone, 9=coal seam, 
10=dolomite, 11=limestone, and 12=strata boundary (modified from Cao, 2012). 

b. Longitudinal section of the structural map: 1=T1j, 2=soil layer, 3=dolomite, 4=limestone, 
5=fissures, 6=sinkholes, 7=underground river, 8=sewage channel (modified from Zhang, 
2017). 

Fig. 2. Structural map of the LKW.
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http://srtm.csi.cgiar.org, which was last accessed on 02 April 2019. The
land use data were from http://landcover.usgs.gov, which was last
accessed on 02 April 2019. The soil types were from http://www.isric.
org, which was last accessed on 05 April 2019. Fig. 3 shows the DEM,
soil types and land use in the LKW.

There are 3 soil types in the study area: zheltozem soil, ferrimorphic
soil, and limestone soil. The vegetation is mainly subtropical evergreen
broad-leaved forest, and the landforms are dominated by low hills and
valleys with steep slopes. Furthermore, the area of sloping cultivated

land is 191.8 ha, accounting for 80.0% of the cultivated land area. Bare
land is associated with abandoned stone quarries, which are mainly
distributed in the middle and southern parts of the basin and account
for 7.66% of the total area. Forest and grassland are the main ecological
land types in this area, and they are mainly distributed in the sandstone
areas on the eastern and western wings of the anticline, accounting for
15.2% and 4.18% of the total area, respectively. The annual runoff
processes in the LKW are shown in Fig. 4.

a. DEM data                                    b. Soil types 

c. Land use types 

Fig. 3. DEM, soil types, and land use types in the LKW.
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2.3. Land use/land cover change during urbanization

In recent years, the research area has undergone rapid urbanization
and drastic changes in land use/land cover patterns. In this paper, the
specific changes in land use patterns were examined in three stages of
urbanization (2005, 2009 and 2019) in the LKW, as shown in Table. 1.

A factor, the proportion of urbanization, was proposed to guide
reasonable urbanization development planning in the LKW. This factor
represents the ratio of the area of built-up land to the total area of the
river basin. According to statistics, there were 105,000 permanent re-
sidents in the LKW in 2019, and the urbanization percentage was 99%,
which indicates that urbanization had reached a saturation point in the
LKW. Additionally, the area of built-up land accounted for 70.2%
(Table. 1) of the total basin, which means that the urbanization factor
was 70.2% in 2019.

To study the hydrological effect of urbanization in a karst area, this
paper proposed 4 extreme scenarios of land use patterns that have oc-
curred or partially occurred in the study area. In scenario 1, the whole

basin is covered by bare karst wasteland without any urbanization or
vegetation, and the exposed karst area further evolves into a rocky
desertification area in this situation. In scenario 2, the whole area is
covered with vegetation. Scenario 3 is the current actual land use si-
tuation in the study area. At this time, the urbanization level of the
study area has become saturated. In scenario 4, reasonable urbanization
development and land use planning are considered. Finally, scenario 0
focuses on the critical land use types of urbanization and is used as the
control group. When the proportion of urbanization exceeds the critical
value for a given land use type in scenario 0, the underground river
entrance exceeds the threshold discharge capacity, and waterlogging
occurs as a result. By comparing the simulated runoff values under
these 4 extreme land use scenarios, the hydrological effects of different
land use patterns were simulated. The 4 extreme scenarios for the land
use data in the LKW are shown in Fig. 5.

Fig. 4. Annual runoff processes from 2014 to 2017 in the LKW.

Table 1
Specific changes in land use patterns in the LKW.

Land use type 2005 2009 2019

Area/hm2 Proportion/% Area/hm2 Proportion/% Area/hm2 Proportion/%

Agricultural land farmland 2136 16.3 920 7.0 576 4.4
garden 569 4.3 689 5.3 654 5.0
forest 3249 24.8 2948 22.5 1480 11.3
others 1069 8.2 367 2.8 326 2.5
total 7024 53.6 4923 37.6 3039 23.2

City and Countryside city 2291 17.5 4091 31.2 6655 50.8
countryside 1455 11.1 1076 8.2 373 2.8
mining 1125 8.6 2036 15.5 2170 16.6
total 4871 37.2 7203 55.0 9196 70.2

roads 527 4.0 580 4.4 663 5.1
ports 123 0.9 63 0.5 23 0.2
water projects 188 1.4 28 0.2 22 0.2
total 838 6.4 671 5.1 708 5.4
Others scenic area 246 1.9 205 1.6 106 0.8

backup land 121 0.9 98 0.7 56 0.4
total 367 2.8 303 2.3 162 1.2
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3. Hydrological model

3.1. Improved Karst-Liuxihe model

The KL model was developed on the basis of the Liuxihe model,
which was proposed by Chen Yangbo (2009) of Sun Yat-sen University,
China. The Liuxihe model is a terrestrial physically based distributed
model that is suitable for surface river simulations and predictions, and

it has achieved good research results (Chen, 2009, 2018; Fan et al.,
2012; Li et al., 2017). To overcome the shortcomings of the application
of the Liuxihe model in karst areas, a KL model was proposed by Li et al.
(2019a) to improve the structure of the original Liuxihe model. How-
ever, this KL model uses the same runoff generation and confluence
modules to calculate rainfall runoff in karst watersheds, which means
that the algorithm for runoff generation and confluence is fixed in this
model. Considering that there are many different karst geomorphologic
distributions in this study area, with bare karst landforms (Fig. 1) co-
existing with buried karst landforms (Fig. 2a), it may not be accurate to
use the same algorithm to depict the rain-runoff processes on different
geomorphic units, as these predictions would not be consistent with the
actual conditions in the basin. To more accurately describe the pattern
of runoff concentration under different land use patterns, this study
attempted to improve the runoff generation algorithm and confluence
modules in the KL model to develop the IKL model, where different
rainfall-runoff algorithms were selected for different karst geomor-
phologic features.

The procedures used to improve the KL model structure were as
follows.

1. Improve the generalization methods for karst aquifers in the model

In the KL model, the smallest calculation unit for a karst basin was
defined as a karst hydrologic response unit (KHRU) (Li et al., 2019a, b).
The KHRU was divided according to the threshold values of the DEM,
land use data and soil type data, as well as the interactions of the karst
geomorphic media. The specific steps to divide the KHRUs in this study
are based on the application of hydrological response units (HRUs) in
the SWAT Model by Ren (2006) and the KL model by Li et al. (2019a,
b). The water movement and transitions in the KHRU were divided into
rapid flow and slow flow based on the width of the karst crack, which
was suitable for karst areas under the same land use type. However, the
original KL model did not discretize karst aquifers; instead, it divided
only the KHRUs and calculated their corresponding hydrological pro-
cesses. To describe the impact of different land use patterns on the
runoff concentration in karst areas based on the IKL model, it was ne-
cessary to discretize the karst water-bearing system in the karst aquifers
based on the KHRUs.

To facilitate the convergence calculations in the IKL model, the karst
aquifers, as the underground structure of the KHRUs, were generalized
into a series of small cuboid units according to the properties of karst
development. These cuboid units were further divided into L layers, and
each layer was divided into M rows and N columns. The location of
each cuboid unit was indicated by row number i, column number j, and
layer number k. Then, the hydraulic head at the centre of the cuboid
unit represented the hydraulic head of the unit, and the permeability
boundary was at the edge of the grid cell. The steps to establish the
cuboid unit in this study referred to the discrete process for the karst
water-bearing system in the CFPM1 module of the MODflow-CFP model
(Reimann and Hill, 2009). Fig. 6 shows these cuboid units that re-
present the simplified karst aquifers.

In the IKL model, a finite difference method (Bittner et al., 2018)
was used to calculate the continuous groundwater flows in these cuboid
units of the simplified karst aquifers:

=
=

= Q µ h V
V C R L

*i
n

i

j i k

1

(1)

where Qi is the amount of water flowing into or out of the cell per unit
time, litres s−1 (abbreviated to L s−1, similarly hereinafter); µ is the
volumetric specific storage of the karst aquifer, which represents the
amount of water absorbed or released per unit volume of an aquifer
when the head changes by one unit, L-1; h is the change in hydraulic
head per unit time m; V is the volume of the valid computational
units, m3; and Cj, Ri, and Lk are the column pitch, row ledge, and layer

a. Scenario 0: Critical land use type      b. Scenario 1: The whole basin is covered by bare  
karst wasteland 

c. Scenario 2: The whole area is covered   d. Scenario 3: The current actual land use types 
with vegetation. 

e. Scenario 4: Reasonable urbanization development 

Fig. 5. Land use data for the 4 extreme scenarios in the LKW.
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thickness of the cuboid units (Fig. 6), m, respectively, where i = 1, 2,
…, Z; j = 1, 2, …, M; and k = 1, 2, …, N.

In the small cuboid units, the karst aquifer in each unit is hetero-
geneous, isotropic, and unstable. The calculated hydraulic head value is
a function of space and time. Thus, the karst aquifers need to be dis-
cretized in space and time. In these cuboid units of the simplified karst
aquifer, the valid computational unit (Fig. 6) was regarded as a dual
medium that includes a porous medium and a very small fissure, and a
partial differential equation was used to describe the hydraulic head
values (Beven and Fisher, 1996; Zhang et al.,2009):

+ +

=

=
=

=

K h D K h D x y t x y t

µ x y Z t

K h D q x y t x y S t
h x y h x j y x y Z

h x y t h x y t x y S t

( ) ( ) ( , , ) ( , , )

( , ) , 0

( ) | ( , , ) ( , ) , 0
( , , 0) ( , ) ( , )

( , , )| ( , , ) ( , ) , 0

x s
h
x y s

h
y

h
t

s
h
n S

S

1 2

*

2

0

1

2

1 (2)

where Ks is the permeability coefficient of the karst aquifer, m d-1; h and
D are the water level of the aquifer and the elevation of the bottom
plate, respectively, m; 1 and 2 are the infiltration recharge strength and
the discharge rate of the aquifer, respectively, m d-1; µ* is the specific
yield in phreatic aquifer, L-1; S1 and S2 are aquifer boundaries with type
I/Dirichlet conditions (Glass and Guerrero, 2010) and type Ⅱ/Neumann
conditions (Neuman and Elizabeth, 1984); n is the outer normal of S2;
q i j t( , , ) is the discharge per unit width of S2, L3 d-1; h i j( , )0 is the initial
water level of the aquifer, m; and Z is the region of the valid compu-
tational units.

2. Calculate evapotranspiration under 4 different land use patterns

In the IKL model, the evapotranspiration can be calculated by the
following equation (Chen, 2009):

= =

= <

E E

E E

, if

, if
p sat

p satfc (3)

where E is the actual evapotranspiration, mm; θfc is the field capacity;
θsat is the saturated water content; Ep is potential evaporation, mm,
which can be calculated from the water surface evaporation rate; and λ
is the evaporation coefficient, which reflects the vegetation form. In
addition, λ = 1-C, where C is the runoff coefficient. Notably, C = R/P,
where R is the runoff depth, mm, and P is the precipitation, mm. The
range of C is [0, 1], and the wetter the study area is, the greater the C
value; λ and C are dimensionless parameters. In the KL model, the
runoff coefficient C does not change with the change in land use modes,
while it is different for the 4 extreme scenarios of the land use patterns

in the IKL model. Therefore, the evapotranspiration capacities are also
different in the 4 scenarios in this study.

3. Rainfall-runoff calculation in the IKL model

In the IKL model, the rainfall-runoff modes were different in the 4
different extreme scenarios: in scenarios 1 and 3, bare karst wasteland
and built-up land accounted for most of the basin, and the rainfall-
runoff mode was infiltration-excess runoff. The infiltration-excess
runoff condition was not considered and calculated in the KL model.
Because the background basin of the KL model is extremely wet and
almost no bare karst landform exists, it was assumed that there was no
infiltration-excess runoff generation (Li et al., 2019a). Under scenario 1
and scenario 3, i.e., where the underlying surface was mainly occupied
by bare karst bedrock or built-up land, the infiltration-excess runoff in
the IKL model could be calculated by a simplified equation:

=
=

R CP
R 0
s

g (4)

where Rs is the surface runoff in period t, mm; C is the runoff coeffi-
cient; P is the rainfall, mm; and Rg is the groundwater runoff, with
Rg = 0 under no infiltration or negligible infiltration conditions for bare
karst bedrock and built-up land.

In scenario 2, the whole area was covered with vegetation, and in
scenario 4, there was reasonable urbanization development and land
use planning. The soil infiltration increased under these 2 scenarios,
and the rainfall-runoff mode was runoff under saturated storage con-
ditions, which was the same mode as in the KL model. No surface runoff
was generated until the water shortage in the vadose zone was full.
After the vadose zone was filled, some of the water spilled over to form
surface runoff, while the rest continued to seep down into the soil layer
and eventually into the underground river system. The runoff genera-
tion under scenarios 2 and 4 could be described using the following
equation set (Chen, 2018):

=
= <

=

R P f P f
R P f

R R at

( ),
0,

exp( )

sm m m m

sm m

gm m
b

0 (5)

where Rsm is the surface runoff depth in period t, mm; Pm is the rainfall
in period t, mm; f is the maximum infiltration rainfall, in terms of
depth, mm; fm is the actual infiltration at that time, mm; Rgm is the
groundwater runoff depth in the cuboid unit in period t, mm, the cu-
boid unit represents the simplified karst aquifers (Fig. 6); R0m is the
average groundwater runoff depth in period t = 0, mm; and a and b are
constants related to the rate of water infiltration.

There was no subsurface runoff generation under scenarios 1 and 3
because the impermeable area covered the whole basin. Under sce-
narios 2 and 4, subsurface runoff occurred under saturated storage
conditions, and the value of runoff generation could be described by Eq.
(5). The confluence was divided into the subsurface flow in the soil
layers and the underground river system. When the water storage in the
soil layer exceeded the field capacity, the water in the soil leaked into
the underground river, whereas when it flowed into the soil layer, the
subsurface flow could be calculated by the following equation set
(Teutsch and Sauter, 1998):

=
=

= >
=

R Q W z
Q v W z

v K
v

· ·
· ·

·tan( ),
0,

Q
x per t

lat lat

lat c fc

lat fc

lat

(6)

where Qlat is the subsurface flow in the soil layers in the x direction, L
s−1; W is the width of the cuboid unit that represents the simplified
karst aquifers (Fig. 6), dm; z is the thickness of the soil layers, dm; θ is
the soil water storage in period t; R is the runoff recharge in a cuboid

Fig. 6. Spatial dispersion of the karst aquifers.
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unit during period t, which includes the net rainfall and the subsurface
flow into the cuboid unit, dm2 s−1; Qperis the seepage, dm2 s−1; vlat is
the flow velocity of the subsurface flow, dm s−1; Kc is the current soil
hydraulic conductivity, dm s−1; is the slope of the cuboid unit; and θfc
is the field capacity. Bates and Campbell (2001) proposed an empirical
equation to calculate the numerical relationship between the current
soil hydraulic conductivity (Kc) and the saturated hydraulic con-
ductivity (Ks):

=
+K

K
c

s sat

b2 3

(7)

where sat is the saturated water content, L s−1, and b is the soil coef-
ficient.

When the water storage in the soil layer exceeds the field capacity,
the water in the soil continues to seep down into the underground river
system. The seepage Qpercan be described by the following equation:

=
= >
=

Q v W
v K
v

·
,

0,

per per

per fc

per fc

2

(8)

where Qperis the seepage water into the underground layer, L s−1; vper is
the flow velocity of the seepage, m s−1; W is the width of the cuboid
unit that represents the simplified karst aquifers, m; K is the perme-
ability coefficient of the karst aquifer, m s−1; and the meaning of the
remaining parameters have been stated previously.

3.2. Model setup

The model setup in this study mainly refers to some initial condi-
tions set before the model runs, which include 1) pre-processing of
rainfall and flood data; 2) division of the KHRUs in the model; and 3)
estimation of drainage capacity at the entrance of the underground
river.

1) Pre-processing of rainfall and flood data

The area of the LKW is very small at only 13.1 km2, and the hy-
drological dynamics of the karst underground river are extremely sen-
sitive to the environmental response. To simulate and predict the re-
sponse of karst floods to urbanization, the temporal scale of these
processes was set to 15 min. This scale represents the time step of the
simulation, which is a relatively fine scale for flood simulations.
Generally, the time scale of simulated flood processes is 1 h.
Measurements for a total of 19 karst flood events (2014–2017) from the
hydrometric station at the catchment outlet (Fig. 1) were collected in
this study. To further reveal the impacts of land use changes on karst
runoff in wet, normal, and dry seasons, the annual runoff values for
2017, 2016, and 2015 were selected as representatives of high flow,
normal flow, and dry flow years, respectively. In combination with the
actual annual runoff situation in the LKW, it was assumed that in a dry
flow year, the annual average flow rate was less than 300 L s−1, and the
maximum flow rate was less than 1500 L s−1, whereas in a high flow
year, the annual average flow was greater than 1000 L s−1, and the
maximum flow was greater than 5000 L s−1. A year with flows between
these ranges was considered a normal flow year.

2) Division of the KHRUs

The establishment of the initial values in the model was based on
the input data, such as the DEM data, soil and land use data and karst
flood events. The whole watershed was divided into 14,555 KHRUs
with high-resolution DEM data, including 1923 river cells and 12,632
hill slope cells. The KHRU was the smallest calculation unit for the karst
basin, and more details about KHRUs can be found in Li et al. (2019a,
b).

3) Estimation of drainage capacity at the entrance of the underground
river.

Before the model was run, it was necessary to determine whether
there was waterlogging in the study area. The necessary conditions for
waterlogging were related to whether the karst depressions in the basin
could retain floodwaters during a rainstorm and whether the flow to the
entrance of the underground river exceeded the flood discharge capa-
city. In this study, a judgement calculation was needed in simulations of
rainfall-runoff events with the IKL model. The specific judgement steps
are shown below.

1. Calculation of the maximum discharge capacity at the entrance of
the underground river in the research area, Qmax:

= =

=

Q A* v *(D/2) 2*v
3.14*(3.5/2) 2*1.35

12.98 m s

max

3 1 (9)

where D is the diameter of the entrance of the Laolongdong cave, and
the entrance has a regular shape, such as a circle. D is approximately
3.5 m according to field measurements, and V is the flow rate of the
underground river at the outlet of LKW, which was determined from the
tracer test and was approximately 1.35 m s−1.

2. Simulation of the water inflow at the entrance of the underground
river, i.e., Qin, based on the IKL model.

3. Comparison of the values of Qmax and Qin to determine whether
flood detention occurred.

If Qin > Qmax, then flood detention occurred, and there was an
outflow at the underground river outlet, i.e., Qout=Qmax. The amount of
flood detention exceeding the drainage capacity of the underground
river entrance was defined as Qs; if Qs greater than 0, then as the
amount of Qs continued to increase, the discharge overflow resulted in
flooding of low-lying areas of the basin, leading to waterlogging. Qs was
calculated as follows:

= +Q Q Q Qs s1 in max (10)

where Qs is the amount of flood detention during this period, m3 s−1,
and Qs1 is the storage of flood water from the preceding time period, m3

s−1; if there is no flood detention, then Qs1 = 0.
If Qin ≤ Qmax, then

= =
= + > +

= > + >

Q Q Q Q Q
Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

, 0
0,

, 0,

out in in s

out in s s in s

out in s in s

max 1

1 1 1 max

max max 1 1 max (11)

The limit discharge capacity of the underground river entrance was
12.98 m3 s−1 (Eq. (9)). Thus, in the IKL model, the simulated critical
peak flow discharge was set to 12.98 m3 s−1. It was assumed that the
other simulation conditions remained unchanged; that is, the same
rainfall and evapotranspiration conditions, soil type, and DEM data
were maintained for each KHRU, the smallest unit of the karst basin.
Only land use data changed with the simulated flood processes. After
several attempts to simulate the floods, the critical land use result
(Fig. 5a) at this critical peak flow of 12.98 m3 s−1 was obtained.

3.3. Model running

In this study, the running model refers to building the IKL model to
simulate flood events at the underground river outlet and forecast fu-
ture runoff. There were large differences in the hydrological processes,
including evapotranspiration, infiltration, rainfall-runoff, and con-
fluence, due to the differences in the built-up land area and vegetation
coverage area. The IKL model was proposed to simulate flood events
under these 4 different land use scenarios, and the procedure was as
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follows: 1. importing the data for the 4 extreme land use scenarios into
the model and assuming that the DEM and soil type data remained
unchanged under these 4 different land use scenarios; 2. calculating the
evapotranspiration under the 4 scenarios using Eq. (3); 3. calculating
the runoff generation (Eqs. (1), (2) and (4), (5)) and confluence (Eqs.
(6)–(8)) in the model with different equations; and 4. inputting the
rainfall and flood event data into the model and simulating the floods.

In the IKL model, the future antecedent soil moisture before floods,
river base flow, future rainfall data, DEM, soil type and land use data
were used to effectively forecast future annual runoff in 2030, 2040,
and 2050. First, the average value of the antecedent soil moisture be-
fore floods could be calculated through continuous rolling simulations
of runoff from 2014 to 2017. Second, the future rainfall values were
calculated. The multiyear average rainfall for each KHRU was weighted
and spread across the entire watershed using the Thiessen polygon
method. Finally, future annual runoff was forecasted: initial conditions,
such as river base flow and soil moisture, were set as input data for the
model in advance, and then rainfall data, DEM elevation, soil type data
and future land use data for a certain year in the future were input into
the IKL model to forecast future annual runoff. Among these datasets,
the future DEM and soil data change much less than the land use data.
Hence, the change in annual runoff with land use was mainly simulated
here. Future land use data according to reasonable land use planning
could be effectively obtained.

In this study, we roughly forecasted the annual runoff for the years
2030, 2040, and 2050. To reduce the uncertainty of the forecast results,
it was ensured that the future annual runoff changed with only the land
use data, while the remaining variables remained unchanged. Such a
processing method was obviously not sophisticated and accurate en-
ough. However, this method was feasible for studying the influence of
only land use change on runoff processes and runoff volume in the
study area.

3.4. Model parameter optimization and uncertainty analysis

In the IKL model, an improved particle swarm optimization algo-
rithm (Chen et al., 2016; Li et al., 2019a) was used to optimize the
model parameters. Data for a total of 19 flood events from 2014 to 2017
were collected in this study. The beginning of the flood process in 2014
and 2015 was the calibration period, and the remaining floods were
used for the validation period (Fig. 4). The first five flood events in the
calibration period were used for parameter optimization in the model,
and the best flood process simulation was used for the final model
parameter optimization, while the remaining floods were adopted to
validate the model.

The uncertainty analysis of the parameters of the IKL model mainly
involved parameter sensitivity analysis in this study. A multiparameter
sensitivity analysis (MPSA) method (Choi et al., 1999; Zhang et al.,
2018a, b) was used herein to evaluate the sensitivity of the parameters.
This method was developed on the basis of the generalized likelihood
uncertainty estimation (GLUE) method (Beven and Binley, 1992). The
parametric sensitivity analysis included four steps in this study, namely,
the definition of the likelihood function, the determination of the
parameter value range and prior distribution, parameter sampling, and
parameter sensitivity calculation.

First, the likelihood function was determined. The likelihood func-
tion was mainly used to determine the fitting degree between the si-
mulated and measured results. The Nash–Sutcliffe coefficient is a re-
latively comprehensive evaluation index, and it was chosen as the
likelihood function in this paper (Chen, 2018; Li et al., 2019a).

= =

=
C

Q Q
Q Q

1
( )
( ¯)

i
n

i i

i
n

i

1
2

1
2 (12)

where C is the objective function value of the Nash–Sutcliffe coefficient;
Qi and Qi are the observed floods and the simulated values,

respectively, L s−1; Q̄ is the average value of the observed floods, L s−1;
and n is the number of observation periods, hours.

Second, the initial parameter range was determined to be [0.5,1.5]
based on the parameter characteristics. The prior distribution of para-
meters was assumed to be uniform.

Third, 10,000 groups of parameter sets were sampled by the Monte
Carlo method, and finally, the sensitivity of various parameters of the
model was evaluated by comparing the difference between the prior
distribution and posterior distribution. The posterior distribution refers
to the probability distribution of each parameter and was calculated
according to the simulation results of the parameter optimization. If the
prior distribution of the parameter was significantly different from the
posterior distribution, then the parameter had a high uncertainty and
was considered a sensitive parameter, while if there was no obvious
difference between the two, then the parameter had a low uncertainty
and was an insensitive parameter. The posterior distribution of the
parameters is calculated as follows:

= ×

=
+

=

P C C

P P

( ) 100

( ¯ )
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(13)

where Pi,j is the probability of the posterior distribution for the i-th
parameter in the j-th series, n is the number of occurrences of the
parameter whose likelihood value was greater than or equal to Xi,j, N is
the 10,000 groups of parameter sets by the Monte Carlo method, i
represents the sensitivity index of parameter I, and P̄i j, is the average
value of the posterior distribution for the i-th parameter in the j-th
series.

4. Results and discussion

4.1. Results of model parameter optimization

The simulation results for the parameter optimization process for
each of the five flood processes in 2014 and 2015 are shown in Fig. 7,
and the evaluation indices of the simulation results are listed in Table.
2.

From the parameter optimization results in Fig. 7, the five flood
process simulation results obtained with the IKL model were much
better than those obtained with the KL model; in particular, the simu-
lation of flood peak flows was more accurate when the IKL model was
used. For further comparison, the evaluation indices of the simulation
results based on the 2 models are listed in Table. 2. These findings in-
dicate that compared with those for the KL model, the 6 indices of the
flood simulations with the IKL model were greatly improved. The
average values of the Nash–Sutcliffe coefficient, C, the correlation
coefficient, R, and the coefficient of the water balance, W, increased by
21%, 21%, and 25%, respectively. The process relative error, P%, the
relative error of the peak flood flow, E%, and the peak flow time error,
T, decreased by 24%, 33%, and 2 h, respectively. Among these eva-
luation indices, the peak flood flows simulated by the IKL model
showed the greatest improvement.

The flood results of these five simulations showed that the effect was
optimal for flood 201407050800. Both the simulated peak flow effect
and flood process were optimized. The evaluation indices of the simu-
lated flood events in Table. 2 demonstrate that the evaluation indices of
flood 201407050800 were the best among those for all floods. There-
fore, flood 201407050800 was adopted for the final model parameter
optimization. The remaining flood events from 2015 to 2017, the va-
lidation period, were used to validate the model performance.

4.2. Model comparison validation and uncertainty analysis

The flood simulation results based on the KL model and the IKL
model were compared to verify the improvement effects of the model.
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Data for nineteen flood events were collected from 2014 to 2017;
among them, the five floods in the calibration period in 2014 and 2015
were used for parameter optimization. The remaining 14 floods in the
validation period from 2015 to 2017 were used for model validation.
The simulation effects of the flow processes are shown in Fig. 8.

Fig. 8 shows that the simulated flows based on the KL model were
smaller than the observed values. Compared with the simulation results
of the KL model, the flood simulation results from 2015 to 2017 were

much improved when the IKL model was used. The IKL model results
were very satisfactory, especially in terms of simulated peak flows, and
the values were very close to the observed values. To further demon-
strate the effectiveness of the 2 models, the evaluation indices of these
14 flood simulations were calculated and are listed in Table. 3.

From Table. 3, compared with those for the KL model, the 6 indices
of the flood simulations were improved when the IKL model was used.
The average values of the Nash–Sutcliffe coefficient, C, correlation

(a) flood 201406120800               (b) flood 201407050800 

(c) flood 201408150800                 (d) flood 201505081600

(e) flood 201505151200 

Fig. 7. Flood process simulation results for parameter optimization.
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coefficient, R, and coefficient of the water balance, W, increased by
23% 23%, and 26%, respectively, while the process relative error, P%,
flood peak flow relative error, E%, and peak flood flow time error, T,
decreased by 21%, 22%, and 3 h, respectively. These evaluation indices
suggest that the IKL model functioned better than the KL model in karst
flood simulation.

The runoff generation and confluence algorithm were fixed in the
KL model (Li et al., 2019a, b). However, the same runoff calculation
method may not be able to accurately describe the complex hydro-
logical processes under different LUCCs in karst areas. In the IKL model,
different runoff generation and confluence algorithms were adopted
according to the different types of land use. Such a treatment was ob-
viously consistent with the real situation of the study area. Therefore,
this IKL model performed better than the KL model in karst flood si-
mulations (Fig. 3 and Table. 8).

To further reflect the impact of land use changes on annual runoff in
wet, normal, and dry seasons, the annual runoff values from 2017,
2016, and 2015 were chosen to represent high flow, normal flow, and
dry flow years, respectively. The values of the flow process throughout
the year simulated by the 2 models from 2014 to 2017 are shown in
Fig. 9.

Based on the results shown in Fig. 9, the simulated flow process
throughout the year based on the KL model was smaller than the ob-
served values. The simulation results based on the IKL model were very
close to the observed values. Compared with the results of the KL
model, the flow processes simulated by the IKL model were much im-
proved, and the results were consistent with the flood event simulation
results throughout the years (Fig. 8 and Table. 3). Table. 4 shows the
evaluation indices of these annual runoff simulations.

Table. 4 shows that the average values of the Nash–Sutcliffe coef-
ficient (C), correlation coefficient (R), process relative error (P%), peak
flood flow relative error (E%), coefficient of the water balance (W), and
peak flood flow time error (T) based on the KL model were 0.65, 0.65,
34%, 42%, 0.61, and 7 h, respectively, and those based on the IKL
model were 0.89, 0.90, 15%, 18%, 0.91, and 4 h, respectively. All in-
dices markedly improved with the new model, which confirmed that
the IKL model functioned better than the KL model in the karst flood
simulations. Additionally, all the flood process simulation results using
the IKL model were satisfactory in wet, normal, and dry seasons, in-
dicating that this model was potentially applicable to all runoff situa-
tions. The uncertainty analysis of the parameters for the IKL model
mainly involved parameter sensitivity analysis in this study. The com-
putational steps of parameter sensitivity analysis can be found in sec-
tion 3.3, and the formulas for the calculation of parameter sensitivity
are shown in Eqs. (12) and (13). Flood 201407050800, which was se-
lected for parameter optimization, was used to calculate the parameter
sensitivity. Table. 5 lists the parameter sensitivity calculation results for
the IKL model.

In Table. 5, the values of i represent the sensitivity of parameter i.

The higher the value of i is, the more sensitive the parameter is. The
rainfall infiltration coefficient was the most sensitive parameter in the
IKL model, which showed that the amount of rainfall infiltration had
the greatest influence on the outlet discharge of the underground river
in the study area. This finding was consistent with the main replen-
ishment source of the underground river in the study area being in-
filtrating rainfall water. The parameter sensitivity sequence of the IKL
model was as follows: rainfall infiltration coefficient, θp > saturated
hydraulic conductivity, Ks > rock porosity, Rp > saturated water
content, θsat > field capacity, θfc > specific yield Sy > soil coeffi-
cient, b > flow direction Fd > thickness of epikarst zone,
h > channel roughness, nl > slope roughness, n > evaporation
coefficient, λ > potential evaporation, Ep > depletion coefficient,
ω > wilting percentage, Cwl. The parameters associated with eva-
poration, including the evaporation coefficient, potential evaporation,
and wilting percentage, were insensitive parameters, which showed
that they had little influence on the flood simulation results. This
finding was consistent with the small proportion of evapotranspiration
during a flood event. The depletion coefficient of underground runoff
was an insensitive parameter, which implied that the amount of water
in the flood receding stage occupied a small proportion of the total
flood amount.

4.3. Flood simulation results for 4 extreme scenarios of land use patterns

In this study, the simulated flow process values under 4 extreme
land use scenarios were compared based on the KL and IKL models, and
the hydrological effects of different land use patterns associated with
urbanization were evaluated in detail. Fig. 10 shows the flow processes
simulated by the IKL model under these 4 scenarios in the LKW. Tables.
6 and 7 show the simulated indices and the related statistical para-
meters (annual runoff, runoff depth and runoff coefficient) under the 4
land use scenarios.

From the simulated flow process results in Fig. 10, Tables. 6 and 7,
the simulated results under scenario 4 (reasonable urbanization de-
velopment) were optimal and closest to the actual observed values.
Under scenario 3 (the current actual land use situation), the total
amounts of simulated flows were largest, and the simulated peak flood
process curves were steepest, which suggests that the increase in the
built-up land area associated with urbanization increased the volume of
runoff and significantly increased the peak flow. Under scenario 1 (all
areas were bare karst wastelands), the simulated flow values were the
second largest. The flow process, runoff depth, and runoff coefficient
simulated under scenario 3 and scenario 1 were larger than the ob-
served values, which indicated that increasing the built-up land and
wasteland areas could increase the total annual runoff and the peak
flow. Under scenarios 1 and 3, the land use patterns led to an increase
in runoff and potentially to catastrophic flooding in the study area.
Under scenario 2 (all areas were vegetated), the simulated flow process

Table 2
Evaluation indices of the simulation results.

Floods Model Nash–Sutcliffe coefficient/
C

Correlation
coefficient/R

Process relative
error/P%

Peak flow relative
error/E%

Coefficient of the water
balance/W

Peak time error/T
(hour)

201406120800 KL 0.67 0.62 45 55 0.67 −7
IKL 0.85 0.89 16 15 0.92 −5

201407050800 KL 0.65 0.64 34 45 0.72 −6
IKL 0.92 0.91 12 8 0.95 −3

201408150800 KL
IKL

0.61
0.88

0.63
0.85

48
14

64
11

0.52
0.93

−5
−4

201505081600 KL 0.75 0.75 34 25 0.74 −5
IKL 0.91 0.87 14 12 0.93 −2

201505151200 KL 0.72 0.71 29 36 0.76 −4
IKL 0.90 0.89 16 15 0.94 −2

average value KL 0.68 0.67 38 45 0.68 −5
IKL 0.89 0.88 14 12 0.93 −3
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values were the smallest. The simulated flood peak process curves were
the most gradual under this scenario (Fig. 10), and the simulated peak
flows were smaller than the observed values, which indicated that an
increase in vegetation could reduce the volume of runoff.

As shown in Table. 7, the comparison of the simulated flow process
values under the 4 land use scenarios indicated that the average value
of simulated flows from 2014 to 2017 was 9,079,830 m3 under land use
scenario 1, 7,037,451 m3 under land use scenario 2, 9,484,703 m3

under land use scenario 3, and 7,354,684 m3 under land use scenario 4.
Thus, the order of the flow volumes simulated under these 4 extreme
land use scenarios was as follows: scenario 3 > scenario 1 > scenario

4 > scenario 2. When these 4 land use modes were converted to one
another, the associated hydrological effects of urbanization also
changed. The sensitivity order of the urbanization effect on annual
runoff was as follows: scenario 2 converted to scenario 3
(9,484,703–7,037,451 = 2,447,252 m3) > scenario 3 converted to 4
(9,484,703–7,354,684 = 2,130,019 m3) > scenario 1 converted to 2
(9,079,830–7,037,451 = 2,042,379 m3).

4.4. Flood forecasting results according to land use pattern planning

The IKL model was used to quantify how the proportion of built-up

(a) flood 201505250800                   (b) flood 201506150800 

(c) flood 201607050800            (d) flood 201609050200

(e) flood 201705051200                     (f) flood 201709101800 

Fig. 8. Flood process simulation results for model validation.
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land area was related to flooding in the study area. The critical land use
data could be identified by setting the underground river drainage ca-
pacity (12.98 m3 s−1 in Eq. (9)) in the model. The critical land use data
are shown in Fig. 5a (scenario 0). In scenario 0, the statistical results
showed that the built-up land area accounted for 45% of the total basin
area, which means that the urbanization proportion factor was 45%.
When this proportion exceeded 45%, the amount of water at the un-
derground river entrance exceeded the limit discharge capacity of
12.98 m3 s−1, and waterlogging could occur in the study area.

Section 2.3 indicates that urbanization reached a saturation point in
2019, and the urbanization proportion factor was 70.2%. According to
the urbanization development requirements of the local government,
the optimal urbanization proportion factor is 30%, and this level must
be achieved by 2050. Therefore, we determined that the urbanization
proportion factor must decrease by 1.26% per year. Thus, reasonable
urbanization development could be achieved in this way, as shown in
Table. 8.

The future annual runoff (2030, 2040, and 2050) could be fore-
casted according to rational land use pattern planning. The steps in
annual runoff forecasting are shown in section 3.2. The forecasting
results are shown in Table. 9.

In Table. 9, the annual runoff in 2019 was simulated based on the
IKL model for comparison with future annual runoff forecasting results.
Notably, the annual runoff will decrease each year. In 2019, the si-
mulated annual runoff was largest at 10,224,655 m3, and it was pro-
jected to reach 5,548,620 m3 in 2050. Thus, under the optimal urba-
nization development scheme for the LKW, runoff in 2050 will decrease
by 4,676,035 m3 compared to the current value, a decline of 45.7%.
The runoff depth and the runoff coefficient were projected to decrease
by 46% and 48%, respectively. Thus, after 30 years of reasonable ur-
banization, the annual runoff reduction will be obvious. The forecasted
annual runoff results for 2030, 2040, and 2050 can provide the ne-
cessary theoretical basis for local flood control decision making in the
future.

The study area, i.e., the Laolongdong karst watershed in Southwest
China, has been a experienced rapid urbanization in recent years. The
constructionThe area of built-up land is increasing year by year-
annually, crowding outreplacing the original ecological green space to
an increasingly large extent (Cao, 2012). The increase ofin built-up land
construction area leads has led to thean increase ofin the impermeable
area and thea decrease ofin infiltration in the basin, and the final result
is the frequent occurrence of catastrophic floods (Zhang, 2017). For
instance, Fairy Dong (Fig. 1), once a famous tourist attraction, was
closed after a waterlogging incident. Therefore, it is necessary to build a
model to quantitatively analyseanalyze the correlation between urba-
nizedation area and catastrophic flooding, and an improved model
(IKL) was developd in this study to simulate and forecast the hydro-
logical effects of urbanization in the study area. The results of flood
simulation based on this IKL model were reasonable and satisfactory,
indicating that the improvement of the KL model was effective and this
imorved IKL model was applicable to the simulation and forecasting of
the effects of urbanization on flood events in karst basins.

5. Conclusions

The structure and parameters of commonly used distributed hy-
drological models are relatively complex (Hartmann et al., 2014, 2015;
Kraller et al., 2014) and require considerable hydrogeological data
when building models of karst areas (Meng et al., 2009). To overcome
the problem of high modelling cost in karst hydrological simulation,
this study attempted to improve the structure and algorithm of the KL
model (Li et al., 2019a, b) and developed the IKL model to simulate and
forecast the effects of urbanization on karst floods. This IKL model
exhibits excellent application potential in karst areas due to its rela-
tively simple structural characteristics; for instance, in terms of vertical
structure, there are only two underground layers. Consequently, it re-
quires less data for modelling than other hydrological models. In ad-
dition, the IKL model has fewer parameters than other distributed

Table 3
Evaluation indices of the karst flood simulations for model validation.

Floods Model Nash–Sutcliffe coefficient/
C

Correlation
coefficient/R

Process relative
error/P%

Peak flow relative
error/E%

Coefficient of water
balance/W

Peak time error/T
(hour)

201505250800 KL 0.67 0.65 37 42 0.67 8
IKL 0.83 0.88 22 20 0.89 4

201506150800 KL 0.62 0.61 42 38 0.71 −7
IKL 0.9 0.85 17 17 0.91 −4

201508200800 KL 0.64 0.69 45 58 0.54 8
IKL 0.85 0.89 14 19 0.88 5

201605150800 KL 0.73 0.68 38 29 0.65 5
IKL 0.86 0.92 25 9 0.85 2

201606181800 KL 0.63 0.65 38 28 0.54 −5
IKL 0.82 0.85 26 11 0.84 −2

201607050800 KL 0.65 0.71 34 38 0.75 5
IKL 0.92 0.91 11 13 0.92 3

201608151200 KL 0.63 0.66 32 29 0.74 5
IKL 0.93 0.94 12 14 0.94 3

201609050200 KL 0.62 0.69 39 45 0.67 −4
IKL 0.88 0.89 17 22 0.85 −3

201705051200 KL 0.63 0.64 42 29 0.52 −5
IKL 0.89 0.86 18 17 0.88 −2

201705210200 KL 0.63 0.66 45 34 0.67 6
IKL 0.87 0.88 17 15 0.91 3

201706180800 KL 0.67 0.64 33 42 0.59 −7
IKL 0.85 0.87 15 12 0.95 −4

201707101200 KL 0.61 0.63 38 35 0.73 −6
IKL 0.9 0.91 16 9 0.93 −3

201708051200 KL 0.62 0.64 35 28 0.64 6
IKL 0.91 0.88 17 15 0.91 3

201709101800 KL 0.63 0.65 40 42 0.72 7
IKL 0.85 0.86 21 23 1.05 5

average value KL 0.65 0.66 38 37 0.65 6
IKL 0.88 0.89 17 15 0.91 3
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models (Li et al., 2019a), which makes it relatively easy to construct
models of karst areas. Finally, the karst flood simulation and forecast
results were quite good, which indicated the applicability of the model
to karst basins. The following conclusions were obtained based on the
research results in this study.

1. Nineteen flood events from 2014 to 2017 were used to test the
performance of the IKL and KL models. The karst flood simulation
results from the IKL model were much better than those from the KL
model; in particular, the simulated peak flows were very close to the
observed values. Compared with those for the flood results simu-
lated by the KL model, the evaluation indices of the karst flood si-
mulations based on the IKL model showed considerable improve-
ment: the average values of the Nash–Sutcliffe coefficient, C,
correlation coefficient, R, and coefficient of the water balance, W,
increased by 23%, 23%, and 26%, respectively, and the process
relative error, P%, flood peak flow relative error, E%, and flood peak
flow time error, T, decreased by 21%, 22%, and 3 h, respectively.

2. The annual runoff values from 2017, 2016, and 2015 were selected
to represent the values of a high flow year, normal flow year, and
dry flow year, respectively. The simulated annual runoff values from
2014 to 2017 were close to the observed values. The average values
of the 6 evaluation indices were 0.89, 0.90, 0.15, 0.18, 0.91, and
4 h, which implied that all the flood simulation results from the IKL
model in the wet, normal and dry seasons were satisfactory.

3. The parameter sensitivity analysis of the IKL model showed that the
rainfall infiltration coefficient was the most sensitive parameter in
the IKL model, while the wilting percentage was the least sensitive
parameter. The parameter sensitivity sequence of the IKL model was
as follows: rainfall infiltration coefficient > saturated hydraulic
conductivity > rock porosity > saturated water content > field
capacity > specific yield > soil coefficient > flow direction >
thickness of epikarst zone > channel roughness > slope rough-
ness > evaporation coefficient > potential evaporation >
depletion coefficient > wilting percentage.

4. The IKL model was proposed in this study to provide detailed si-
mulations of 4 extreme scenarios with different land use patterns of
urbanization. The simulated results indicated that the increase in
the built-up land area increased the volume of runoff more than any
other factor, such as the peak flow and bare karst wasteland area,
which had the second- and third-largest effects, respectively.
However, the increase in vegetation could reduce the volume of
runoff. The annual runoff volume simulated under these 4 extreme
land use scenarios displayed the following order: scenario 3 > sce-
nario 1 > scenario 4 > scenario 2. The order of the effects of
urbanization on annual runoff was as follows: scenario 2 converted
to scenario 3 > scenario 3 converted to scenario 4 > scenario 1
converted to scenario 2.

5. In 2019, the urbanization of the LKW reached a saturation point,
and the urbanization proportion factor was 70.2%. The optimal
proportion factor was 30%, and the critical proportion factor was
45%. When the proportion factor exceeded 45%, waterlogging could
occur in the LKW. Compared with the simulated annual runoff value
in 2019, the forecasted annual runoff value in 2050 decreased by
45.7%, and the reduction was obvious after 30 years of reasonable
urbanization. Future annual runoff forecasting results can provide
the necessary theoretical basis for decision making related to local
flood control.

6. Data availability**a

All data used in this paper are available, findable, accessible, in-
teroperable, and reusable (FAIR).

The rainfall data and karst flood events were observed at field ob-
servation stations in the LKW. The watershed property data, including
high-precision DEM data, land use data and soil type data, can be
downloaded from the Internet at no cost. The DEM data were from
http://srtm.csi.cgiar.org, which was last accessed on 02 April 2019. The
land use data were from http://landcover.usgs.gov, which was last
accessed on 02 April 2019. The soil type data were from http://www.
isric.org, which was last accessed on 05 April 2019. The prototype of
the Liuxihe model was provided by Yangbo Chen, Sun Yat-sen

(a) flow process simulated throughout 2014 

(b) flow process simulated throughout 2015 

(c) flow process simulated throughout 2016 

(d) flow process simulated throughout 2017 

Fig. 9. Simulated flow processes in different years based on the 2 models.
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Table 4
Evaluation indices of the annual runoff simulations from 2014 to 2017.

Annual runoff Model Nash–Sutcliffe coefficient/
C

Correlation
coefficient/R

Process relative
error/P%

Peak flow relative
error/E%

Coefficient of water
balance/W

Peak time error/T
(hour)

2014 KL 0.63 0.65 34 46 0.62 −7
IKL 0.89 0.92 12 21 0.93 −3

2015 KL 0.65 0.68 34 42 0.64 −6
IKL 0.91 0.93 14 18 0.92 −4

2016 KL 0.67 0.64 32 41 0.56 7
IKL 0.87 0.89 18 19 0.89 5

2017 KL 0.63 0.62 35 40 0.61 6
IKL 0.88 0.87 17 15 0.91 3

average value KL 0.65 0.65 34 42 0.61 7
IKL 0.89 0.9 15 18 0.91 4

Table 5
The parameter sensitivity results in the IKL model.

Floods Infiltration coefficient/θp Potential evaporation/Ep Evaporation coefficient/λ Wilting coefficient/Cwl Thickness of epikarst zone/h

201407050800 0.91 0.36 0.41 0.20 0.65
Soil coefficient/b Saturated water content/θsat Rock porosity/Rp Field capacity/θfc Permeability coefficient/Ks
0.78 0.85 0.86 0.82 0.88
Flow direction/Fd Slope roughness/n Depletion coefficient/ω Specific yield/Sy Channel roughness/n1
0.74 0.62 0.33 0.80 0.64

(a) flow process simulated throughout 2014 under the 4 scenarios 

(b) flow process simulated throughout 2015 under the 4 scenarios 

(c) flow process simulated throughout 2016 under the 4 scenarios

(d) flow process simulated throughout 2017 under the 4 scenarios  

Fig. 10. Simulated flow processes under the 4 extreme land use scenarios in the LKW.
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Table 6
Evaluation indices of annual runoff under the 4 land use scenarios.

Scenario Annual
runoff

Nash–Sutcliffe
coefficient/C

Correlation
coefficient/R

Process relative
error/P%

Peak flow
relative error/E
%

Coefficient of water
balance/W

Peak time
error/T (hour)

Scenario 1: All bare karst
wasteland

2014 0.83 0.82 0.21 0.2 1.18 4
2015 0.81 0.84 0.23 0.21 1.25 5
2016 0.82 0.83 0.18 0.17 1.12 −3
2017 0.85 0.85 0.2 0.19 1.18 5

Scenario 2: All vegetation 2014 0.78 0.8 0.35 0.48 0.38 −5
2015 0.75 0.78 0.32 0.35 0.55 4
2016 0.8 0.75 0.28 0.32 0.62 −5
2017 0.77 0.79 0.31 0.45 0.54 5

Scenario 3: The current actual
land use situation
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2015 0.8 0.85 0.25 0.26 1.32 6
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2016 0.91 0.92 0.13 0.11 0.89 −3
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Table 7
Statistical parameters for simulated annual runoff.

Scenario Time Observed annual
runoff, m3

Simulated annual
runoff, m3

Observed runoff
depth, m

Simulated runoff
depth, m

Observed runoff
coefficient

Simulated runoff
coefficient

Relative
error, %

Scenario 1: All bare karst
wasteland

2014 7,491,377 8,598,452 0.57 0.66 0.53 0.61 15
2015 4,345,818 4,905,645 0.33 0.37 0.31 0.35 13
2016 8,237,654 9,525,479 0.63 0.73 0.58 0.67 16
2017 10,805,705 13,289,745 0.82 1.01 0.76 0.94 23

Scenario 2: All vegetation 2014 7,491,377 6,758,650 0.57 0.52 0.53 0.48 −10
2015 4,345,818 3,875,687 0.33 0.3 0.31 0.27 −11
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Table 8
Future reasonable land use planning in the LKW.
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hm2 hm2 hm2 hm2
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Forest and grass 2308.8 17.6 2947.5 22.5 3930 30 4585 35
Other land use type 7.2 0.1 10.49 0.1 15.7 0.1 13.13 0.1

Table 9
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2050 5,548,620 0.42 0.39

J. Li, et al. Catena 197 (2021) 104990

16



jcyjX0002), the China Postdoctoral Science Foundation
(2019M653316), the Chongqing Postdoctoral Science Foundation
(cstc2019jcyj-bshX0017), the Open Project Program of the Laboratory
of Chongqing groundwater resource utilization and environmental
protection (2019KZ00774), the Open Project Program of the Chongqing
Key Laboratory of the Karst Environment (Cqk201801), the Open
Project Program of Guangxi Key Science and Technology Innovation
Based on Karst Dynamics (KDL and Guangxi 202009), and the
Fundamental Research Funds for the Central Universities
(XDJK2019C017).

References

Ambroise, B., Beven, K., Freer, J., 1996. Toward a generalization of the TOPMODEL
concepts: Topographic indices of hydrologic similarity. Water Resour. Res. 32,
2135–2145.

Bates, B.C., Campbell, E.P., 2001.A.A. Markov chain Monte Carlo scheme for parameter
estimation and inference in conceptual rainfall- runoff modeling. Water Resour. Res
37 (4), 937–947.

Beven, K., Binley, A., 1992. The future of distributed models-model calibration and un-
certainty prediction. Hydrological Processes 6 (3), 279–298.

Beven, K.J., Fisher, J.I., 1996. Remote sensing and scaling in hydrology. Stewart, J.B. (Ed.
), Scaling Issues in Hydrology. Wiley:Chichester.

Bhave, A.G., Conway, D., Dessai, S., Stainforth, D.A., 2018. Water resource planning
under future climate and socioeconomic uncertainty in the cauvery river basin in
karnataka, india. Water Resour. Res. 54 (2), 708–728.

Birk, S., Geyer, T., Liedl, R., Sauter, M., 2005. Process-based interpretation of tracer tests
in carbonate aquifers. Ground Water 43 (3), 381–388.

Bittner, D., Narany, T.S., Kohl, B., Disse, M., Chiogna, G., 2018. Modeling the hydro-
logical impact of land use change in a dolomite-dominated karst system. J. Hydrol.
567, 267–279.

Cao, M., 2012. Effects of Urbanization on Hydrogeochemical and Stable Isotopic
Characteristics of Karst Groundwater-A Case from the Laolongdong Watershed of
Chongqing. Southwest University, Chongqing, China.

Chen, Y.B., 2009. Liuxihe Model. China Science and Technology Press, Beijing, China.
Chen, Y., Li, J., Xu, H., 2016. Improving flood forecasting capability of physically based

distributed hydrological models by parameter optimization. Hydrol. Earth Syst. Sci.
20, 375–392. https://doi.org/10.5194/hess-20-375-2016.

Chen, Y., 2018. Distributed Hydrological Models., 2018. Springer Berlin Heidelberg,
Switzerland. https://doi.org/10.1007/978-3-642-40457-3_23-1.

Choi, J., Harvey, J.W., Conklin, M.H., 1999. Use of multi-parameter sensitivity analysis to
determine relative importance of factors influencing natural attenuation of mining
contaminants. the Toxic Substances Hydrology Program Meeting, Charleston ,south
Carolina.

Cornaton, F., Perrochet, P., 2002. Analytical 1D dual-porosity equivalent solutions to 3D
discrete-continuum models. Application to karstic spring hydrograph modelling. J.
Hydrol. 262, 165–176.

Dewandel, B., Lachassagne, P., Bakalowicz, M., Weng, P., Al-Malki, A., 2003. Evaluation
of aquifer thickness by analysing recession hydrographs. Application to the Oman
ophiolite hard-rock aquifer. J. Hydrol. 274 (1), 248–269.

Fan, Z., Hao, Z., Chen, Y., Wang, J.H., Huang, F.H., 2012. The Application and Research
of Income Flood Simulation of the Baipenzhu Reservoir with the Liuxihe Model. Acta
Scientiarum Naturalium Universitatis Sunyatseni 51 (2), 113–118.

Fleury, P., Plagnes, V., Bakalowicz, M., 2007. Modelling of the functioning of karst
aquifers with a reservoir model: Application to Fontaine de Vaucluse (South of
France). J. Hydrol. 345 (1–2), 38–49.

Frumkin, H., 2002. Urban sprawl and public health. Publ. Health Reports 117 (3),
201–217.

Geyer, T., Birk, S., Liedl, R., Sauter, M., 2008. Quantification of temporal distribution of
recharge in karst systems from spring hydrographs. J. Hydrol. 348 (30), 452–463.

Glass, O., Guerrero, S., 2010. Controllability of the Korteweg-de Vries equation from the
right Dirichlet boundary condition. Syst. Control Lett. 59 (7), 390–395.

Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., Weiler, M., 2014. Karst water
resources in a changing world. Review of hydrological modeling approaches. Rev.
Geophys. 52 (3), 218–242.

Hartmann, A., Mudarra, M., Marín, A., Andreo, B., Wagener, T., 2015. Relating Land
Surface Information and Model Parameters for a Karst System in Southern Spain. In:

Hydrogeological and Environmental Investigations in Karst Systems Environmental
Earth Sciences 1. Springer, Berlin, Heidelberg, pp. 345–352.

Kraller, G., Warscher, M., Strasser, U., Kunstmann, H., Franz, H., 2014. Distributed hy-
drological modeling and model adaption in high alpine karst at regional scale
(berchtesgaden alps, germany). Springer Int. Publ. Switzerland. https://doi.org/10.
1007/978-3-319-06139-9_8.

Lan, J.C., 2014. Study on Migration, Partitioning and Ecological Risk of PAHs in a Karst
Underground River System in Southwest China. Southwest University, Chongqing,
China.

Li, J., Chen, Y., Wang, H., Qin, J., Li, J., Chiao, S., 2017. Extending flood forecasting lead
time in a large watershed by coupling WRF QPF with a distributed hydrological
model. Hydrol. Earth Syst. Sci. 21, 1279–1294. https://doi.org/10.5194/hess-21-
1279-2017.

Li, J., Yuan, D., Liu, J., Jiang, Y., Chen, Y., Hsu, K.L., Sorooshian, S., 2019a. Predicting
floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically
based distributed hydrological model. Hydrol. Earth Syst. Sci. 23, 1505–1532.

Li, J., Hong, A., Yuan, D., Jiang, Y., Deng, S., Cao, C., Liu, J., Chen, Y., 2019b. Comparing
the performances of WRF QPF and PERSIANN-CCS QPEs in karst flood simulations
and forecasting with a new Karst-Liuxihe model. Hydrol. Earth Syst. Sci. Discuss.
1–48. https://doi.org/10.5194/hess-2019-285.

Liedl, R., Sauter, M., Huckinghaus, D., Clemens, T., Teutsch, G., 2003. Simulation of the
development of karst aquifers using a coupled continuum pipe flow model. Water
Resour. Res. 39 (3), 1057–1068. https://doi.org/10.1029/2001WR001206.

McMahon, P.B., Burow, K.R., Kauffman, L.J., Eberts, S.M., Böhlke, J.K., Gurdak, J.J.,
2008. Simulated response of water quality in public supply wells to land use change.
Water Resour. Res. 44 (7). https://doi.org/10.1029/2007WR006731.

Meng, H.H., Wang, L.C., Su, W.C., Huo, Y., 2009. Development of a Karst Sinkhole -based
Semi-Distributed Hydrological Model and Its Application. Sci. Geographica Sinica 29
(4), 550–554.

Meyer, W.B., Turner, B., 1994. Change in land use and cover: A global perspective.
Cambridge University Press, London.

Neuman, S.P., Elizabeth, A.J., 1984. Analysis of nointrinsic spatial variability by residual
kriging with application to regional groundwater levels. J. Int. Assoc. Mathem. Geol.
16 (5), 499–521.

Nikolaidis, N.P., Bouraoui, F., Bidoglio, G., 2013. Hydrologic and geochemical modeling
of a karstic Mediterranean watershed. J. Hydrol. 477, 129–138.

Rao, Y., 2005. The effects of Land Use on Kasrt Water Quality in Karst Regions. Doctoral
dissertation, Southwest China Normal University, China.

Reimann, T., Hill, M.E., 2009. MODFLOW-CFP: A New Conduit Flood process for
MODFLOW-2005. Ground Water 43, 321–325.

Sarrazin, F., Hartmann, A., Pianosi, F., Rosolem, R., Wagener, T., 2018. V2karst v1.1: a
parsimonious large-scale integrated vegetation–recharge model to simulate the im-
pact of climate and land cover change in karst regions. Geosci. Model Develop. 11
(12), 4933–4964.

Shuster, E.T., White, W.B., 1971. Seasonal fluctuations in the chemistry of lime-stone
springs: A possible means for characterizing carbonate aquifers. J. Hydrol. 14 (2),
93–128.

Teutsch, G., Sauter, M., 1998. Distributed parameter modelling approaches in karst-hy-
drological investigations. Bull. d'Hydrogéologie 16, 99–109.

Trcek, B., Veselic, M., Pezdic, J., 2006. The vulnerability of karst springs-a case study of
the Hubelj spring (SW Slovenia). Environ. Geol. 49 (6), 865–874.

Turner, B.L., Kasperson, R.E., Meyer, W.B., Dow, K.M., Golding, D., Kasperson, J.X.,
Ratick, S.J., 1990. Two types of global environmental change: definitional and spa-
tial-scale issues in their human dimensions. Global Environ. Change 1 (1), 14–22.

Yuan, D.X., 2002. China karst power systems. Geological Publishing House, Beijing,
China.

Zhang, Y.Z., 2017. Effects of allogenic acids (sulfuric acid and nitric acid) on karst carbon
cycle-a study from Laolongdong subterranean catchment. Southwest University,
Chongqing, China, Chongqing.

Zhang, J., Lin, G., Li, W., Wu, L., Zeng, L., 2018a. An Iterative Local Updating Ensemble
Smoother for Estimation and Uncertainty Assessment of Hydrologic Model
Parameters With Multimodal Distributions. Water Resour. Res. 54 (3), 1716–1733.

Zhu, C., Li, Y., 2014. Long-Term Hydrological Impacts of Land Use/Land Cover Change
From 1984 to 2010 in the Little River Watershed, Tennessee. Int. Soil Water Conserv.
Res. 2 (2), 11–21.

Zhang, S., Yang, Y., Mcvicar, T.R., Yang, D., 2018b. An analytical solution for the impact
of vegetation changes on hydrological partitioning within the budyko framework.
Water Resour. Res. 54 (1), 519–537.

Zhang, Z.C., Chen, X., Shi, P., Wei, L.N., 2009. Distributed hydrological model and eco-
hydrological effect of vegetation in Karst watershed. Adv. Water Sci. 20, 6, 54–59.

J. Li, et al. Catena 197 (2021) 104990

17

http://refhub.elsevier.com/S0341-8162(20)30540-3/h0005
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0005
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0005
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0015
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0015
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0015
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0020
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0020
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0030
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0030
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0030
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0035
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0035
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0040
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0040
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0040
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0045
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0045
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0045
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0050
https://doi.org/10.5194/hess-20-375-2016
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0075
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0075
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0075
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0080
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0080
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0080
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0085
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0085
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0085
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0090
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0090
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0090
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0095
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0095
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0100
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0100
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0105
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0105
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0110
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0110
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0110
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0115
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0115
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0115
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0115
https://doi.org/10.1007/978-3-319-06139-9_8
https://doi.org/10.1007/978-3-319-06139-9_8
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0130
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0130
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0130
https://doi.org/10.5194/hess-21-1279-2017
https://doi.org/10.5194/hess-21-1279-2017
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0140
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0140
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0140
https://doi.org/10.5194/hess-2019-285
https://doi.org/10.1029/2001WR001206
https://doi.org/10.1029/2007WR006731
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0160
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0160
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0160
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0165
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0165
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0170
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0170
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0170
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0175
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0175
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0185
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0185
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0190
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0190
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0190
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0190
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0195
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0195
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0195
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0200
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0200
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0205
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0205
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0210
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0210
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0210
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0220
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0220
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0225
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0225
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0225
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0230
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0230
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0230
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0235
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0235
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0235
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0240
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0240
http://refhub.elsevier.com/S0341-8162(20)30540-3/h0240

	Elaborate simulations and forecasting of the effects of urbanization on karst flood events using the improved Karst-Liuxihe model
	1 Introduction
	2 Study area and data
	2.1 Landform and hydrogeological characteristics
	2.2 Property data for the basin
	2.3 Land use/land cover change during urbanization

	3 Hydrological model
	3.1 Improved Karst-Liuxihe model
	3.2 Model setup
	3.3 Model running
	3.4 Model parameter optimization and uncertainty analysis

	4 Results and discussion
	4.1 Results of model parameter optimization
	4.2 Model comparison validation and uncertainty analysis
	4.3 Flood simulation results for 4 extreme scenarios of land use patterns
	4.4 Flood forecasting results according to land use pattern planning

	5 Conclusions
	6 Data availability**a
	7 Author contributions**a
	Declaration of Competing Interest
	Acknowledgements
	References




