Research papers

Potential ENSO effects on the oxygen isotope composition of modern speleothems: Observations from Jiguan Cave, central China

Zhe Suna,b,c, Yan Yanga,⁎, Jingyao Zhaod, Ning Tiana, Xiangxiang Fenga

a Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400071, China
b Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
c University of Chinese Academy of Science, Beijing 100049, China
d Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an 710049, China

\textbf{A R T I C L E I N F O}

This manuscript was handled by Huaming Guo, Editor-in-Chief, with the assistance of Pedro J. J Depetris, Associate Editor

Keywords:
Oxygen isotope
Precipitation
Karst drip water
Modern speleothems
El Niño Southern Oscillation
Jiguan Cave
Central China

\textbf{A B S T R A C T}

Despite of the fast development of speleothem records, oxygen isotope (δ\textsubscript{18}O), the main paleoclimatic proxy, remains complicated in climatic interpretation. Continuous cave monitoring is essential for understanding the response of stalagmite oxygen isotope to East Asian Monsoon moisture transportation. We introduce a 7 years (2010–2016) study on oxygen isotope of atmospheric precipitation, cave drips and modern speleothems at Jiguan Cave, central China, located Chinese north–south divide where is sensitive to Asian Monsoon. The monitoring covered a whole ENSO (El Niño Southern Oscillation) cycle, from El Niño in 2010 to La Niña in 2011 and recovered another El Niño in 2015. The precipitation δ\textsubscript{18}O shows obvious seasonality (negative in summer and positive in winter), but air temperature and rainfall amount are not primary controlling factors. The interannual δ\textsubscript{18}O of precipitation corresponds with ENSO variability, which means δ\textsubscript{18}O value is positive during El Niño event and vice versa. We used HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model to simulate the moisture transportation for rainy season in El Niño and La Niña years, and found the Pacific contributed over 50% moisture in El Niño years and the Indian Ocean was the predominant oceanic source in La Niña year. There is no seasonality in drips δ\textsubscript{18}O value, while the response to ENSO variability is evident on interannual scale. The stable negative δ\textsubscript{18}O of drips compared with precipitation indicate there is a threshold for infiltration, suggesting cave drips are recharged by summer heavy precipitation with light δ\textsubscript{18}O value, but it’s the mixture of latest and former rainy precipitation that recharge drips in drought, which has been verified by simple infiltration model. We found the modern speleothems were precipitated under nonequilibrium fractionation during drought years, nevertheless, they can record the El Niño related δ\textsubscript{18}O positive anomaly. Overall, the modern speleothems can receive the precipitation δ\textsubscript{18}O signal transferred by drips, and our study offers significance for verification of Asian Summer Monsoon driving force and interpretation of stalagmite δ\textsubscript{18}O.

1. Introduction

Stalagmite, the vital archive for paleoclimate reconstruction, has developed fast recently due to its series of advantages, such as precise dating, widely distribution, continuous precipitation, copious proxies and little external disturbance (e.g., Banner et al., 2007; Cai et al., 2008, 2010; Cheng et al., 2009, 2016; Shopov et al., 2004; Tan et al., 2015; Wang et al., 2001, 2017; Yuan et al., 2004; Zhu et al., 2017). Nevertheless, as the most important proxy, the interpretation of δ\textsubscript{18}O remains in argument. Previous studies attributed its controlling factors to rainfall amount or air temperature. For example, Fleitmann et al. (2004) found there was significant anticorrelation between stalagmite δ\textsubscript{18}O and bands thickness, which reflected the precipitation variation. Bar-Matthews et al. (2003) revealed the most negative in stalagmite δ\textsubscript{18}O from north and central Israel was synchronous with the heaviest rainfall in east Mediterranean. The air temperature was introduced to explain the stalagmite δ\textsubscript{18}O variation in Ireland and Austria (e.g., Mangini et al., 2005; McDermott et al., 1999), and supported by the contemporary increasing growth rate.

In general, the stalagmite δ\textsubscript{18}O is usually regarded as the East Asian Monsoon signal in China (e.g., Cai et al., 2010; Cheng et al., 2009; Dayem et al., 2010; Hu et al., 2008; Maher, 2008; Yuan et al., 2004). Wang et al. (2001) suggested it was controlled by the ratio between summer and winter precipitation, and Hu et al. (2008) emphasized the

⁎ Corresponding author at: No. 2 Tiansheng Road, Beibei District, Chongqing 400071, China.

\textbf{ARTICLE INFO}

Corresponding author at: No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China.

\textbf{E-mail addresses:} michael2482004@126.com (Z. Sun), yy2954@swu.edu.cn (Y. Yang), ajiunicorn@stu.xjtu.edu.cn (J. Zhao), 2840142455@qq.com (N. Tian), 827453214@qq.com (X. Feng).

https://doi.org/10.1016/j.jhydrol.2018.09.015

Received 27 February 2018; Received in revised form 1 August 2018; Accepted 8 September 2018

Available online 10 September 2018

0022-1694/ © 2018 Elsevier B.V. All rights reserved.
rainfall amount effect. Some researches, however, preferred the change of moisture source rather than amount effect during Holocene in China (e.g., Maher, 2008; Maher and Thompson, 2012). Such conclusion is partly supported by Clemens et al. (2010) and Dayem et al. (2010) who suggested the change of moisture source and upstream runout process should be taken into consideration.

Cave monitoring is an effective method to accurately understand the speleothem δ18O significance, and such study has been implemented as early as 1980s (Yonge et al., 1985). Treble et al. (2005) disclosed the evident anticorrelation between precipitation δ18O and rainfall amount at Moondyne Cave, SW Australia, likely indicating the inaccurate interpretation of stalagmite δ18O as regulated by temperature. Given the evenly distributed rainfall throughout the year, the seasonality of precipitation δ18O was attributed to the seasonal change in moisture source at Gunung Mulu and Gunung Buda National Park (Cobb et al., 2007). Furthermore, because of homogenization in the bedrock, cave drips generally exhibit more smooth δ18O pattern than precipitation, suggesting mixture before infiltrating into cave (e.g., Bar-Matthews et al., 2003; Genty et al., 2014; Mischel et al., 2015; Moerman et al., 2014; Vaks et al., 2003). Hence, the stable drips δ18O are commonly regarded as the mean annual amount weighted precipitation δ18O for local region (e.g., Williams and Fowler, 2002; Yonge et al., 1985), but due to evaporation happened in epikarst or rapid infiltration, drips δ18O can still reflect apparent variation (e.g., Bar-Matthews et al., 1996; Cruz et al., 2005; Denniston et al., 1999; Van Rampelbergh et al., 2013).

Cave monitoring has been widely carried out in south China. The good correlation between δ18O of precipitation and drips and meteorological parameters (air temperature and rainfall amount) suggests speleothem δ18O records monsoon variation (Li et al., 2000). Li et al. (2011) found the drips δ18O in Furong Cave showed stable value with no evident rate change, which was attributed to the mixture of atmospheric precipitation. The positive correlation between drip δ18O and drip rate was observed at Liangfeng Cave (Luo et al., 2014). And the homogenization effect can be demonstrated by the decreasing δ18O amplitude of precipitation, soil water and drips (Luo et al., 2013). Duan et al. (2016) compiled 8 long term monitoring caves in China, and found anti temperature effect was observed in 7 caves and the amount effect was feeble. The precipitation δ18O cannot be simply contributed to temperature or amount effect because of various moisture sources.

As discussed above, current interpretation of speleothem δ18O basically focuses on amount effect (e.g., Bar-Matthews et al., 2003; Pleitmann et al., 2004; Hu et al., 2008), temperature effect (e.g., Feng et al., 2014; Mangini et al., 2005), monsoon intensity (e.g., Cheng et al., 2016; Wang et al., 2005; Yuan et al., 2004), and moisture source change (e.g., Cobb et al., 2007; Dayem et al., 2010; Maher, 2008; Maher and Thompson, 2012). Actually, the parallel speleothem δ18O variation in Chinese monsoon region on different time scales (Liu et al., 2015) potentially suggests controlled by same circulation pattern. Dayem et al. (2010) found the spatial distance of contemporary speleothems with parallel δ18O variation was far than 500 km, which was the critical distance for areas share similar meteorological condition. To explain this phenomenon, Tan (2014, 2016) proposed circulation effect, which suggested West Pacific Subtropical High (WPSH) shifted more westwards during El Niño events, thus drove more proximal Pacific moisture to East Asia, and the shorter Rayleigh distillation distance made the ultimate precipitation with positive δ18O. During La Niña events,
however, WPSH moved more eastwards, and moisture from distal Indian Ocean relatively increased. The longer distance depleted more 18O, therefore resulted in more negative precipitation δ^{18}O. Some monitoring and modeling studies have found the positive correlation between precipitation 18O and ENSO (El Niño Southern Oscillation) on interannual scale (e.g., Cai and Tian, 2016; Ishizaki et al., 2012; Vuille et al., 2005; Yang et al., 2016).

To testify the circulation effect, we choose Jiguan Cave, located southeast of Chinese Loess Plateau frontier where belongs to Chinese north–south divide and intersection of humid and semi-arid zone. Compared with high-latitude mainly influenced by temperature and the predominant amount effect in low-latitude, the special location of Jiguan Cave might be sensitive to different moisture sources. Moreover, this study started from 2010 to 2016, covering a whole ENSO cycle (El Niño in 2010 and 2015, La Niña in 2011). Through analyzing the δ^{18}O of precipitation, cave drips and modern speleothems, we offer significance for interpretation of speleothem and to verify the driving force for Asian Summer Monsoon.

2. Materials and method

2.1. Geographical setting and sample collection

Jiguan Cave (33°46′N, 111°34′E) is located at north slope of Funiu mountain (Fig. 1), ~4 km southwest of Luanchuan county, Henan Province, central China. The cave entrance altitude is ~900 m asl, the length is ~5600 m and one third has been developed for tourism. The average cave temperature is 16.4 °C and relative humidity keeps higher than 90% during monitoring period. Mean annual temperature and rainfall amount recorded by an adjacent meteorological station are 12.1 °C and 840.6 mm (1957–2014), respectively. More than 50% of annual precipitation occurs in rainy season (July–September). Some rainfall lasted more than one day, and some storm only lasted ~20 min. The host rock mainly consists of Cambrian limestone (Cai et al., 2008), with thickness ~30 to 40 m. Vegetation above the cave is dominated by conifers, oaks and bushes.

From 2010 to 2016, we almost collected every precipitation event. A precipitation event is defined by both the meteorological station and our precipitation collector. Sometimes, when the meteorological station reports rainfall but there is no water in our collector, it is not taken as an event, and vice versa. The meteorological station reports rainfall amount everyday (from 20:00 to 20:00), which is considered as an event and named using the date. Those rainfall events were named after the first day of raining if they lasted more than one day. In such case, we replaced new container at 20:00 to avoid enhanced evaporation. The multiple containers during such a long rainfall event were mixed and sealed using polyethylene vial and stored in fridge (approximately 4 °C) before measurement. Snow was sealed by same method after melt. The fast drip site (LYXS: Li Yu Xi Shui, consecutive drip with average rate ~22 ml/min) and slow drip site (TGBD: Tian Gong Bing Deng, average rate ~11 ml/min, hiatus in drought years) were collected in situ every 2 months, by the way, we also sampled 2 pools (YZT: Yu Zhu Tan and YCG: Yao Chi Gong) and an underground river (DTH: Dong Tian He) for parallel comparison. Modern speleothems were sampled by placing substrates under these 2 drips and substrate was also replaced every 2 months. Totally, we collected 284 precipitation, 182 cave water and 42 modern speleothem samples.

2.2. Isotope analysis

The oxygen and hydrogen isotopes of water samples were measured by water isotopes analyzer (IWA-35d-EP) of Los Gatos Research (LGR) Company. The standard reference is LGR3A/4A/5A from Los Gatos Research Company. As an analysis routine, LGR IWA analyzed each sample 6 times. Because residue of previous sample likely influences next sample (memory effect), the first two measurements were not taken as valid data. The 1σ precision (standard deviation based on sample measurement) is 0.2‰ for δ^{18}O and 0.6‰ for δ^2H. The δ^{18}O and δ^2H of modern speleothems were measured using Finnigan Delta-V Plus gas isotope mass spectrometer combined with Kiel IV automated carbonate device and specific details refer to Li et al. (2011). Each sample was analyzed 8 times, the long term 1σ precision (standard deviation based on sample measurement) is 0.1‰ for δ^{18}O and 0.6‰ for δ^2H. Isotopic values are reported in delta notation relative to VSMOW (Vienna Standard Mean Ocean Water) for water and to VPDB (Vienna Pee Dee Belemnite) for modern speleothems.

2.3. Climate data and back trajectory model

The air temperature and precipitation amount were supplied by local meteorological station, located in the east county, ~8.4 km away from Jiguan Cave. NINO 3.4 SST anomaly data is downloaded from NOAA (National Oceanic and Atmospheric Administration) climate prediction center. We used HYSPLIT Model (Stein et al., 2015) and Reanalysis daily data with 3rd resolution to simulate and cluster air mass trajectories to affirm moisture source for every precipitation event in rainy season (July–September) during El Niño and La Niña years. Trajectories were performed four times every day (at UTC 00:00, 06:00, 12:00, and 18:00) and simulating height was set at 850 hPa and moved backward for 240 h (10 days). We choose 850 hPa because the moisture content in 850 hPa has been widely used as the main moisture transportation level in both Indian and East Asian monsoon regions, moreover, 850 hPa contains more moisture than other levels in central-north China (e.g., Basha and Ratnam, 2013; Liang et al., 2013; Ma and Gao, 2006; Shen et al., 2010). All the statistic parameters involved in this manuscript were processed by SPSS19.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Oxygen and hydrogen isotopes of precipitation, cave water and modern speleothems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>δ^{18}O/‰ (VSMOW)</td>
</tr>
<tr>
<td>Precipitation</td>
<td>-15.66</td>
</tr>
<tr>
<td>LYXS (drip)</td>
<td>-10.20</td>
</tr>
<tr>
<td>TGBD (drip)</td>
<td>-10.19</td>
</tr>
<tr>
<td>YCG (pool)</td>
<td>-9.70</td>
</tr>
<tr>
<td>YZT (pool)</td>
<td>-8.95</td>
</tr>
<tr>
<td>DTH (underground river)</td>
<td>9.24</td>
</tr>
<tr>
<td>LYXS (carbonate)</td>
<td>-10.00</td>
</tr>
<tr>
<td>TGBD (carbonate)</td>
<td>-10.09</td>
</tr>
</tbody>
</table>

LYXS (Li Yu Xi Shui) and TGBD (Tian Gong Bing Deng) are acronyms of drips as scenic spots in Jiguan Cave; YCG (Yao Chi Gong) and YZT (Yu Zhu Tan) are acronyms of pools in the cave. DTH (Dong Tian He) is the acronym of underground river located in the deepest part of cave. VSMOW is Vienna Standard Mean Ocean Water.
Precipitation isotope

3.1. Precipitation isotope

The variations of δ18O and δD in precipitation are from −15.66‰ to 8.08‰ (average at −5.45 ± 3.66‰) and from −118.29‰ to 45.81‰ (average at −35.01 ± 29.24‰), respectively (Table 1). This isotopic variation is covered by previous Chinese precipitation isotopes report (Liu et al., 2014). The significant seasonality, positive in winter and negative in summer (Fig. 2b), has been introduced elsewhere in China (e.g., Duan et al., 2016; Luo et al., 2013; Luo et al., 2014; Wang and LinHo, 2002; Wang et al., 2015; Xie et al., 2011). Some researchers contributed it to seasonal moisture variation (e.g., Araguas-Araguas et al., 1998; Duan et al., 2016; Feng et al., 2017; Hoffmann and Heimann, 1997; Thomas et al., 2016), For example, the monsoonal rainfall in summer generates lighter isotopes and inland or westerly moisture in winter, common in eastern and central China, leads to heavier isotopes.

3.2. Oxygen isotopes of cave water and modern speleothem

As showed in Fig. 3, the δ18O of cave water fluctuated evidently, from −10.20‰ to −6.43‰ for drips, −9.70‰ to −3.73‰ for pools and −9.24‰ to −6.69‰ for underground. There is no seasonal variation in drips. Fast drip (LYXS) and slow drip (TGBD) rapidly reduced by 3.55% from 2009 to 2010 and kept stable (variation ≤ 0.88‰) in the following 4 years, then fast increased 2.23%. The parallel pattern and approximate values suggest same recharge source. The deepest underground river (DTH) δ18O showed similar pattern with more gentle variability. The changes of δ18O in 2 pools are complex. YCG, the pool located nearby LYXS, showed deviating trend in comparison to LYXS despite it was recharged by LYXS, and YZT showed significant seasonality (negative in summer and positive in winter) since 2012.

The modern speleothems δ18O values ranged from −10.00‰ to −5.02‰ (averaged at −8.02 ± 1.37‰) for LYXS and from −10.09‰ to −6.91‰ (averaged at −8.69 ± 1.03‰) for TGBD. It seemed modern speleothems δ18O were seasonal in 2010 and 2011, negative in summer and positive in winter, which was similar to precipitation. Thereafter, LYXS showed stable negative value (−9.50‰ ± 0.34‰), and the synchronous drips exhibited comparable stability (−9.93‰ ± 0.33‰). Hiatus more than 1 year appeared since 2013 because of serious drought, and carbonate recovered in Nov. 2014 since drought was released by increasing rainfall and drips were over-saturated for precipitation (Sun et al., 2017). The δ18O value was more positive than that of stable period by 2‰, which responded to the synchronous enrichment in precipitation and drips δ18O.

4. Discussion

4.1. Controls on δ18O of precipitation

Temperature effect (e.g., Dansgaard, 1964; Rozanski et al., 1992)
was δ18O depletion to East Asia, thus leading to more positive precipitation δ18O in Wuhan. Moreover, amount weighted δ18O in 2011 (La Niña event) is most negative and even lighter than δ18O in 2010 to 2015. This pattern is similar to ENSO variability (El Niño in 2010, 2015 and La Niña in 2011). Furthermore, the ENSO also imprinted on the rainfall amount. Previous studies reported the great possibility of more precipitation in East Asia during El Niño weakening phase (e.g., Ju and Slingo, 1995; Zheng and Zhu, 2015), and this hypothesis is verified by the precipitations in Jul. 2010 (> 400 mm, twice in comparison to historical record). The El Niño event in 2015 is the most powerful in this century, correspondingly, the amount weighted δ18O is the most positive in monitoring, approximately equal to average δ18O in Wuhan. Moreover, amount weighted δ18O in 2011 (La Niña event) is most negative and even lighter than precipitation δ18O of Xi’an and Zhengzhou (IAEA/WMO, 2001). Given the positive correlation between amount weighted precipitation δ18O and NINO 3.4 SST Anomaly (r = 0.715, p < 0.1, n = 7), ENSO variability is potentially an important reason for interannual variation of precipitation δ18O.

Circulation effect speculates WPSH would shift more westwards during El Niño events, and drive more proximal Pacific moisture experience less 18O depletion to East Asia, thus leading to more positive precipitation δ18O (Tan, 2014). To verify this assumption, we used HYSPLIT model and monthly Renanalysis data (2.5° resolution) offered by NOAA to simulate moisture trajectories for every precipitation event during rainy season (July to September) in 2010, 2015 (El Niño year) and 2011 (La Niña year). We divided the moisture source into three parts: Indian Ocean, the Pacific and others composed of China South Sea, inland, westerly and arctic sources. We suggested the vapor traced back to Arabian Sea and Bay of Bengal was treated as Indian Ocean origin. China South Sea was surrounded by Philippines, Vietnam,

Table 2
Correlation coefficients between monthly weighted precipitation δ18O and monthly mean air temperature and precipitation amount in study area.

<table>
<thead>
<tr>
<th>r²</th>
<th>δ18O precipitation amount</th>
<th>air temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.36</td>
<td>0.036</td>
<td>0.033</td>
</tr>
</tbody>
</table>

Table 3
Local meteoric water line in study area.

<table>
<thead>
<tr>
<th>year</th>
<th>sample number</th>
<th>slope</th>
<th>intercept</th>
<th>air temperature/°C</th>
<th>precipitation/mm</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>39</td>
<td>8.94 ± 0.34</td>
<td>17.89 ± 2.54</td>
<td>12.50</td>
<td>1009.7</td>
<td>0.95</td>
</tr>
<tr>
<td>2011</td>
<td>33</td>
<td>8.39 ± 0.53</td>
<td>9.82 ± 3.63</td>
<td>12.05</td>
<td>949.5</td>
<td>0.89</td>
</tr>
<tr>
<td>2012</td>
<td>42</td>
<td>7.64 ± 0.34</td>
<td>6.77 ± 2.18</td>
<td>12.17</td>
<td>639.8</td>
<td>0.92</td>
</tr>
<tr>
<td>2013</td>
<td>36</td>
<td>8.24 ± 0.46</td>
<td>9.10 ± 3.10</td>
<td>13.65</td>
<td>434.6</td>
<td>0.90</td>
</tr>
<tr>
<td>2014</td>
<td>39</td>
<td>6.92 ± 0.42</td>
<td>2.12 ± 2.43</td>
<td>12.91</td>
<td>782.5</td>
<td>0.88</td>
</tr>
<tr>
<td>2015</td>
<td>31</td>
<td>7.16 ± 0.29</td>
<td>5.81 ± 1.80</td>
<td>12.63</td>
<td>911.4</td>
<td>0.93</td>
</tr>
<tr>
<td>2016</td>
<td>44</td>
<td>7.34 ± 0.38</td>
<td>3.94 ± 2.43</td>
<td>13.31</td>
<td>673.0</td>
<td>0.90</td>
</tr>
<tr>
<td>2010 – 2016</td>
<td>284</td>
<td>7.63 ± 0.14</td>
<td>6.55 ± 0.94</td>
<td>12.71</td>
<td>771.5</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Table 4
Amount weighted mean δ18O of precipitation in study area (VSMOW/%).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>-12.29</td>
<td>-7.84</td>
<td>-3.62</td>
<td>-5.47</td>
<td>-5.54</td>
<td>-6.42</td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td>-5.71</td>
<td>-3.73</td>
<td>-3.49</td>
<td>-6.95</td>
<td>-5.16</td>
<td>-7.20</td>
<td>-1.97</td>
</tr>
<tr>
<td>Apr</td>
<td>-3.18</td>
<td>-0.42</td>
<td>-2.24</td>
<td>-6.22</td>
<td>-1.30</td>
<td>-2.98</td>
<td>-5.69</td>
</tr>
<tr>
<td>May</td>
<td>-8.43</td>
<td>-2.16</td>
<td>-2.53</td>
<td>-2.67</td>
<td>-3.30</td>
<td>-4.30</td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td>-4.91</td>
<td>-7.45</td>
<td>-8.20</td>
<td>-6.93</td>
<td>-4.73</td>
<td>-8.98</td>
<td>-6.88</td>
</tr>
<tr>
<td>Jul</td>
<td>-7.84</td>
<td>-11.02</td>
<td>-11.02</td>
<td>-8.88</td>
<td>-7.00</td>
<td>-7.16</td>
<td>-10.80</td>
</tr>
<tr>
<td>Oct</td>
<td>-5.89</td>
<td>-2.77</td>
<td>-8.69</td>
<td>-6.78</td>
<td>-4.36</td>
<td>-10.50</td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td>-6.77</td>
<td>-5.34</td>
<td>-7.88</td>
<td>-7.60</td>
<td>-8.75</td>
<td>-8.33</td>
<td>-4.07</td>
</tr>
<tr>
<td>Dec</td>
<td>-7.28</td>
<td>-8.33</td>
<td>-5.25</td>
<td>-4.99</td>
<td>-8.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>annual</td>
<td>-7.62</td>
<td>-8.50</td>
<td>-8.28</td>
<td>-6.17</td>
<td>-6.97</td>
<td>-5.78</td>
<td>-7.03</td>
</tr>
</tbody>
</table>

Null represents that station recorded some small rainfall but we did not collect precipitation sample or when we got sample but station did not record rainfall.

The monthly and annual weighted average precipitation δ18O were calculated based on each precipitation event (Table 4, null represents we did not collect precipitation sample or rainfall amount data from meteorological station was not available). There is obvious inter-annual variation in δ18O, from -7.62% in 2010 to -8.50% in 2011. After 2011, precipitation δ18O gradually enriched and reached its most positive value at -5.78% in 2015. This pattern is similar to ENSO variability (El Niño in 2010, 2015 and La Niña in 2011). Furthermore, the ENSO also imprinted on the rainfall amount. Previous studies reported the great possibility of more precipitation in East Asia during El Niño decaying phase (e.g., Ju and Slingo, 1995; Zheng and Zhu, 2015), and this hypothesis is verified by the precipitations in Jul. 2010 (> 400 mm, twice in comparison to historical record). The El Niño event in 2015 is the most powerful in this century, correspondingly, the amount weighted δ18O is the most positive in monitoring, approximately equal to average δ18O in Wuhan. Moreover, amount weighted δ18O in 2011 (La Niña event) is most negative and even lighter than precipitation δ18O of Xi’an and Zhengzhou (IAEA/WMO, 2001). Given the positive correlation between amount weighted precipitation δ18O and NINO 3.4 SST Anomaly (r = 0.715, p < 0.1, n = 7), ENSO variability is potentially an important reason for interannual variation of precipitation δ18O.
Malaysia and China mainland. The Pacific source is defined as the vapor originated near east Chinese and Japanese coastlines. The other three sources, accounting for little significance, mainly reflect vapor from local or westerly transportation and polar intrusion. As shown in Fig. 4 and Table 5, the Pacific predominately contributed 63% and 55% of moisture (amount weighted proportion) in 2010 and 2015, respectively. The Indian Ocean became the main marine moisture source in 2011, accounting for 38%, while the Pacific contributed to 11%. The cluster results of top 2 heaviest precipitation in 3 rainy seasons and integrated moisture flux verify circulation effect (Fig. 4). We also calculated the correlation of total 39 precipitation events and different moisture sources. The correlation coefficients are 0.351 ($p<0.05$, $n=39$) and -0.451 ($p<0.01$, $n=39$) for Pacific and Indian Ocean, respectively (Table 5). In fact, the monthly precipitation distribution in 2015 exhibited anomalies. The majority of precipitation occurred in advance from March to June. We simulated the strongest precipitation on 31st March (> 50 mm/d) and found most moisture originated from inland or transported by westerly (Fig. 4h). Pre-monsoon precipitation is enriched in 18O (Yu et al., 2014). It might be this temporal anomalous precipitation combined with El Niño effect result the most positive oxygen isotope in 2015.

Although there are many reports have emphasized the effects of upstream process and convection intensity in vapor source on the interannual variation of precipitation oxygen isotope (e.g., Cai and Tian, 2016; Cai et al., 2017; Lee and Fung, 2008; Liu et al., 2014; Moore et al., 2014), the above discussion indicates precipitation 18O is regulated by ENSO variability and the increasing proportion of moisture in Pacific is coming at the expense of Indian Ocean.

4.2. Relation of precipitation and drips

The inheritance of drips to precipitation after infiltration would be disturbed by specific cave system (Fairchild and Baker, 2012). The similar range and trend indicate LYXS and TGBD share same recharge source. There is no evident seasonal trend and CV (coefficient of variation) of LYXS is only 16.01% of precipitation. The majority of precipitation occurred in advance from March to June. We simulated the strongest precipitation on 31st March (> 50 mm/d) and found most moisture originated from inland or transported by westerly (Fig. 4h). Pre-monsoon precipitation is enriched in 18O (Yu et al., 2014). It might be this temporal anomalous precipitation combined with El Niño effect result the most positive oxygen isotope in 2015.

Although there are many reports have emphasized the effects of upstream process and convection intensity in vapor source on the interannual variation of precipitation oxygen isotope (e.g., Cai and Tian, 2016; Cai et al., 2017; Lee and Fung, 2008; Liu et al., 2014; Moore et al., 2014), the above discussion indicates precipitation 18O is regulated by ENSO variability and the increasing proportion of moisture in Pacific is coming at the expense of Indian Ocean.
The moisture source is basically divided in 3 sections, including Indian Ocean, the Pacific and other composed of China south sea, inland, westerly, and tiny arctic vapor.

Correlation coefficient between precipitation $\delta^{18}O$ and Indian Ocean ratio: -0.451, $p < 0.01$, n = 39.

Correlation coefficient between precipitation $\delta^{18}O$ and the Pacific ratio: 0.351, $p < 0.05$, n = 39.

attributed such pattern to the fact condensed water mixed into drips or drips basically reflected the precipitation originated from humid marine moisture (Rozanski et al., 1992). In the monitoring, most drips are plotted above or near LMWL (Fig. 5), indicating negligible evaporation and drips are mainly recharged by precipitation. The multyear $\delta^{18}O$ are $-9.14 \pm 0.97\%$, $-8.54 \pm 1.56\%$ and $-5.57 \pm 3.69\%$ for LYXS, TGBD and precipitation, respectively. The relative negative values in drips are contradictory to the enrichment caused by evaporation or reaction between bedrock and water stored in fissures and conduits. Given the stability of drips $\delta^{18}O$ (variation $\pm 0.88\%$) from 2011 to 2014, we suggest there is a threshold (eg, Bar-Matthews et al., 1996; Fairchild and Baker, 2012; Gentry et al., 2014; Jones and Banner, 2003; Pape et al., 2010; Tooth and Fairchild, 2005) of precipitation need to be exceeded to form effective replenishment, which means precipitation would be lost by evaporation, transpiration or runoff in the epikarst if precipitation is small (Gentry et al., 2014). Although the amount effect is suitable because heavy precipitation usually experienced serious depletion in ^{18}O, it's not reasonable to utilize this hypothesis to explain our result due to the poor relation between amount and precipitation.
respectively. And the ENSO related variation of precipitation δ¹⁸O can be recorded in drips on interannual scale.

The trend of DTH is similar to that of LYXS: the fast decrease (−2.22‰) from 2010 to 2011, relative stable period during 2011–2014, and gradually soared up since 2015. But the descent accomplishment ~8 months later than drips and the amplitude was less than drips, which might be related to its deepest location, means longer mixture process. The δ¹⁸O trend of YCG is complex, gentle decrease with fluctuation during 2010–2011 and gradual increase since 2014 seems similar to the drips and precipitation, while the unexpected increase from 2012 to 2014 punctuated this pattern. We suggest such deviation is the mirror of extreme drought during 2012–2014. Scenic staffs introduced some drips hiatus and the downside of DTH level, moreover, the relative humidity in 2013 decreased to ~90% allow for its usual value was >95%. Given the long residence time exposed to air, the anomaly is basically cause by evaporation during drought, supported by the lower location compared with LMWL (Fig. 5). Another pool, YZT, showed distinct seasonal δ¹⁸O cycle (negative in summer and positive in winter) since 2012. It is connected to entrance by manmade tunnel (~20 m) and the temperature pattern is same as outside. Therefore, temperature effect is not the reason for oxygen isotope variation. And it's not plausible to attribute seasonality to suddenly increase in conduits connectivity because of stable tectonic feature (Song et al., 2009). We suggest ventilation is the main cause since air results condensate water in summer and evaporation in winter (De Freitas and Schmekal, 2003), this alternation explains seasonal oxygen isotopic cycle.

4.3. Significance for modern speleothem

It's crucial to verify whether speleothem was formed under equilibrium fractionation before paleoclimatic reconstruction (eg., Hendy, 1971; O'Neil et al., 1969). We chose Kim and O'Neil (1997):

\[\delta^{18}O_{\text{sp}} = \delta^{18}O_{\text{calcite}} - \delta^{18}O_{\text{drip}} = 18.03(10^{-3}) - 32.4 \]

hereinafter referred to as BO function, and Tremaine et al. (2011):

\[\delta^{18}O_{\text{sp}} = \delta^{18}O_{\text{calcite}} - \delta^{18}O_{\text{drip}} = 16.01(10^{-3}) - 24.6 \]

hereinafter referred to as T function, where δ¹⁸Osp is the isotopic composition of modern speleothem (VPDB), δ¹⁸Ocalc is the isotopic composition of drip (VSMOW), and T is Kelvin temperature, to verify our results (Fig. 6). It should be noted 2 months lag between drips and modern speleothems, for example, we suggest carbonate collected from June is corresponded to drips in April. There are little differences for simulated oxygen isotopic composition between 2 equations, ~1‰ heavier for T function. The mean δ¹⁸O value of LYXS (−8.22 ± 1.38‰) is similar to T function (−8.26 ± 1.13‰) and mean δ¹⁸O value of TGBD (−8.99 ± 1.00‰) is close to BO function (−9.02 ± 1.66‰). The difference of measured and simulated data is basically same with McDermott et al. (2011), however, the dramatic fluctuation in 2011–2014 (Fig. 2d) probably denote non-equilibrium fractionation. The intense positive deviation of δ¹⁸O in Dec.2012 and Jun.2013 (~4‰, Fig. 6) responds to the serious drought in 2012 and 2013 reflected by positive anomaly in YCG δ¹⁸O value, implying effect of evaporation.

Table 6
Comparison between δ¹⁸O of rainy precipitation during 2010–2014 and following responding drips δ¹⁸O.

<table>
<thead>
<tr>
<th>Year</th>
<th>2010 (VSMOW/‰)</th>
<th>2011 (VSMOW/‰)</th>
<th>2012 (VSMOW/‰)</th>
<th>2013 (VSMOW/‰)</th>
<th>2014 (VSMOW/‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainy precipitation</td>
<td>−8.55</td>
<td>−9.68</td>
<td>−9.68</td>
<td>−8.73</td>
<td>−8.53</td>
</tr>
<tr>
<td>Responding drip</td>
<td>−8.57</td>
<td>−9.82</td>
<td>−10.03</td>
<td>−9.76</td>
<td>−9.13</td>
</tr>
</tbody>
</table>

Precipitation is based on every event in rainy season (Jul.–Sep.) during 2010–2014 (stable and relative lighter δ¹⁸O value) and responding drips δ¹⁸O are weighted by dripping rate from current rainy season to next pre-rainy season. For example, −8.55‰ is the average precipitation δ¹⁸O from Jul. to Sep. in 2010, and −8.57‰ is the average of LYXS from Jul.2010 to Jun.2011. TGBD is excluded for drip δ¹⁸O calculation because of its long cutoff over 2 years in this period.

There is a significant correlation between δ¹⁸O and δ¹⁰C in LYXS (r = 0.556, p < 0.01, n = 27), indicating nonequilibrium fractionation (Cai et al., 2010), and the correlation coefficient weakens to 0.497 (95% significance level) when we remove these anomalous positive data in drought years. The coefficient of TGBD is only 0.248 (p > 0.1, n = 15), which is corresponded to Mckeller et al. (2004) conclusion that kinetic fractionation is easier to occur for drips with higher rate.

It's clear that δ¹⁸O value of modern speleothem is controlled not only by drip, but also by the specific cave condition, such as dripping rate, temperature and relative humidity. Although the effect of drought results positive deviation, the oxygen isotopic composition of modern speleothem showed synchronous response to ENSO variation, positive in El Niño and negative in La Niña. Such phenomenon suggests that ENSO-driven precipitation δ¹⁸O variation can be transferred to modern speleothem by drip. However, stalagmite should be prudently used for paleoclimate recovery when without cave monitoring research.

5. Conclusion

The results of 7 continuous years monitoring for precipitation, cave drips and modern speleothems are as follows: (1) the range of precipitation δ¹⁸O is ~15.66‰ to 8.08‰ and there is obvious seasonal variation, negative in summer and positive in winter. Statistic test suggests rainfall amount and air temperature are not basic controlling factors for precipitation δ¹⁸O value. The interannual pattern responds to ENSO variabilty: heavier in El Niño and lighter in La Niña. The simulation of HYSPHit model based on rainfall event in rainy season of ENSO years shows moisture from Pacific contributes more than 50% and Indian Ocean becomes the predominate marine source in El Niño and La Niña, respectively, which preliminarily verify circulation effect. (2) δ¹⁸O of drips show narrow variation in comparison to precipitation and no seasonality because of homogenization in upper aquifer. The stable and light δ¹⁸O value of drips in drought indicated that drips were recharged mainly by rainy season (July-September) precipitation with relatively negative δ¹⁸O value because small rainfall might be lost by transpiration and evaporation in the overlying soil. Such hypothesis is verified by simple infiltration model, but it’s the mixture of latest and previous rainy precipitation that replenish drips in drought. (3) We have carried out equilibrium fractionation test, and modern speleothems exhibit some nonequilibrium fractionation happened, especially during extreme drought period, ~4% more positive than simulated value. Nevertheless, the ENSO driven interannual pattern of precipitation δ¹⁸O has been transferred to speleothems through drips.

Overall, it is of significance to emphasize the cave monitoring to further understand δ¹⁸O process from precipitation to modern speleothem before climatic reconstruction.

Acknowledgements

We thank Prof. Tingyong Li in the Chongqing Key Laboratory of Karst Environment, Southwest University, China, and Prof. Juzhi Hou in Key Laboratory of Alpine Ecology and Biodiversity (LAEB), Institute of Tibetan Plateau Research, Chinese Academy of Sciences for assistance in the isotope analysis and useful discussion. This work was supported by grants of the National Natural Science Foundation of China.
China (41672160, 41372177 and 40902053), the National Key R&D Program of China (2016YFC050230205), the Research Fund for the Doctoral Program of Higher Education of China (20090182120005) and the Fundamental Research Funds for the Central Universities (XDJK2011B004).

References

Z. Sun et al.

